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I Categories



A category is a directed graph whose nodes are called objects and
whose edges are called arrows, equipped with a partial operation
on arrows called composition satisfying the following conditions

I For each object A there is an arrow A
idA- A called the

identity arrow on A.

I For each compatible pair of arrows A
f- B,B

g- C

(meaning src(g) = target(f )) there is an arrow A
fg- C

called the composition of f and g

I composition (when defined) is associative: (fg)h = f (gh)

I For all objects A,B,C , and arrows C
f- A,A

g- C

f idA = f idA g = g



Examples

I Set : the category with sets as objects and functions as arrows.

I Ab: objects: Abelian Groups, arrows: group homomorphisms

I Grp: objects: Groups, arrows: group homomorphisms

I Top: objects: Topological Spaces, arrows: continuous maps

I A× B: objects: pairs (A,B) ∈ |A| × |B|, arrows: pairs of
arrows from A,B.

I 1, the category with one object and one arrow.

I 2, the category · - · with two objects, their identity arrows
and one arrow between them.



More examples

I Rel: objects: sets, arrows: binary relations A
R- B.

I Ao: The opposite category of A. objects: the objects of A,

arrows: B
f o- A for each A

f- B. So for

A
f- B

g- C we have C
go
- B

f o- A

with go f o = (fg)o and ido = id .

I Graph: objects: Graphs, arrows: graph homomorphisms.



An important example: the slice category

Let C be a category, and A an object of C. Then the slice of C by
A (or C over A), written C/A, is the category with

I objects: arrows of C whose target is A.

I arrows: from B
β- A to C

γ- A are arrows f in C from
B to C making the following diagram commute

B
f

- C

A
�

γβ

-

Reversing the arrows gives rise to the coslice A/C.



Note that there is a natural functor C - C/A. (send B to

B × A
r- A) Action on arrows?.



Some categorical notions

I A terminal object in C is an object (called 1) such that for

every other object A there is a unique arrow A
!- 1.

I A coterminal (or initial) object 0 in B satisfies the dual

property: for any object A there is a unique arrow 0
?- A

What are the initial and terminal objects in Set, Rel, C/A?



Monic and Epic Arrows

I An arrow A
m- B in a category is monic if for every pair of

arrows

•
x-

y
- A

m- B

if xm = ym then x = y .

I An arrow A
e- B in a category is epic if for every pair of

arrows

A
e- B

x-

y
- •

if mx = my then x = y .



In Set epis are precisely the surjections, and monos the injections.
Not necessarily so in other concrete categories. e.g. in the category

Mon of Monoids. Consider containment N ⊆- Z. It’s an epi!.



Products and Coproducts

A product of two objects A and B in a category is an object A× B

together with a diagram A �
l

A× B
r- B (or just the triple

(A× B, l, r)) satisfying the following condition. For every object C

and pair of arrows A �
f

C
g- B there is a unique arrow

〈f , g〉 : C - A× B making the following diagram commute

C

A �
l

�

f

A× B

! 〈f , g〉

?

r
- B

g

-



A coproduct of two objects A,B in category A is an object

together with a diagram A
ιl- A + B �

ιr
B satisfying the

following condition For every object C and pair of arrows

A
f- C �

g
B there is a unique arrow [f , g ] : C � A + B

making the following diagram commute

C

A
ιl
-

f

-

A + B

! [f ,g ]

6

�
ιr

B

�

g



Let A be a category with products and let A,B be objects of A
and C be the category whose objects are diagrams of the form

A �
f

C
g- B. with an arrow

(A �
f

C
g- B)

ϕ- (A �
f ′

C ′
g ′- B) defined to be an

arrow C
ϕ- C ′ of C making the induced diagram commute.

What is the terminal object in this category?



Examples

I In Set, 0 is {}, 1 is {∗}, any one element set.

I In Set A× B is the Cartesian Product, A + B the disjoint
union.

I in Rel, 0 is the same as in Set, which is also 1Rel . ?what is
the product? (it’s not the cartesian product), coproduct?

I Top, the category of topological spaces and continuous maps
has the sum (with the sum topology = the finest topology
making the injections continuous) as a coproduct. The
product is just the set-theoretic product together with the
so-called product topology not the box topology.



Functors

Let A,B be categories. A functor F : A - B is given by a pair

of functions F : |A| - |B| and F : arr(A) - arr(B)
satisfying:

F (C
f- D) = F (C )

F (f )- F (D)

F (fg) = F (f )F (g)

F (idA) = idF (A)



Functors (cont)

A contravariant functor from A to B is just a functor

F : Ao - B. We take this to mean, for objects C ,D in A

F (C
f- D) = F (D)

F (f )- F (C )

F (fg) = F (g)F (f )

F (idA) = idF (A)



Functors (cont)

Cat, the category of categories has categories as objects and
functors as arrows.



isos

An arrow between two objects A
f- B is an isomorphism if it

has both a left and right inverse, i.e. if there is an arrow B
g- A

such that fg = idA and gf = idB .
A functor can also be an isomorphism (it is an arrow in the
category of categories). e.g. just as in Set we have

A× 1 ' A (A× B)× C ' A× (B× C) A× B ' B× A



A “famous” functor: The fundamental group

Functors formalize some important correspondences in
mathematics. For example the homotopy group functior

Top
π- Grp

Sending topological spaces to homotopy - equivalent loop classes.
Continuous maps between topological spaces are sent to group
homomorphisms.
This functor can be used to give a simple proof of Brouwer’s fixed
point theorem



Suppose f is a continuous map D - D that does not fix any
point x .

&%
'$
�
�
�
�
��

•x
•f (x)

Let D
g- ∂D send each point x to the point on the boundary

picked out by the vector shown above.



The function g is continuous and maps each point on the
boundary to itself.

S1 ⊂ - D

S1
�

gid
-



The induced diagram cannot commute. Contradiction.

Z = π(S1) - π(D) = {0}

Z = π(S1)
�

π(
g)

id
-



Some algebraic examples

I Any monoid can be viewed as a one object category. Functors
between them are monoid homomorphisms.

I Similarly groups are one-object categories with all arrows
isomorphisms.

I Posets are categories with at most one arrow between objects
(and the identity arrow on each).



Comma categories

The slice is a special case of the comma category construction: Let
A,B and C be categories with functors

F : A - C and G : B - C.

An object in the comma category (F ↓ G ) is an arrow from F (A)
to G (B) for some objects A,B. An arrow between two objects u, v
is a pair of arrows f , g (of the appropriate type) making the
following digram commute.

F (A)
F (f )
- F (A′)

G (B)

u

?

G (g)
- G (B ′)

v

?

The slice C/A is a special case: (1C ↓ λx .A).



Natural Transformations

There is a natural way to define a mapping from one functor to

another (with the same type). Let F ,G : A - B. A natural
transformation α from F to G is a family of arrows

{αX : F (X ) - G (X )|X ∈ |A|} in B, one for each object X of A
satisfying the following “naturality condition”: For each arrow

X
m- Y in A the following diagram commutes.

F (X )
αX- G (X )

F (Y )

F (m)

? αY- G (Y )

G (m)

?





Functor categories

Given two categories A,B we can the define the functor category
BA with

objects: Functors from A to B
arrows: Natural transformations from one functor to another.



Functor Categories (cont)

Many interesting mathematical structures arise as functor categories.
Let M be a monoid defined as a one-object category. Then SetM is the
category of M-sets, or semigroup actions. That is to say, each object (i.e.
functor) F picks out a set F (•) and a closed family of functions on this
set. We can define, for x ∈ F (•), m ∈M

xm := F (m)(x)

Then it is easy to check that functoriality of F guarantees the monoid
action axioms:

x(m1m2) = (xm1)m2 xid• = x

Natural transformations η between M-sets are M-homomorphisms:
η(xm) = η(x)m.
A group acting on a set is similarly formalized as a functor category.



Functor Categories (cont)

The functor category

Set
•1
-
- •2

can be seen as the category of graphs. Each object is essentially a pair of
sets (edges and nodes) with a pair of maps between them, namely the
src and target maps.
A natural transformation α between two objects F and G in this category
is a pair of maps, αedge , αnode satisfying

EdgeF
αedge- EdgeG

NodeF

srcF

? αnode- NodeG

srcG

?

and the same commutativity for the target map. α is a graph

homomorphism.



More on functor cats and natural transformations

A nice ?exercise:
For any categories A,B and C,

A1 ' A CA×B ' (CB)A (A× B)C ' AC × BC



For example, for the second problem let’s see how to define,

I for each functor F : A× B - C a functor F ∗ : A - CB, and

I for each nat t : F - G , a nat t∗ : F ∗ - G∗.

Let F ∗(A)(B) = F (A,B) and F ∗(A)(B1
β- B2) = F (idA, β).

Now for any arrow A1
α- A2 in A we define

F ∗(α) : F ∗(A1) - F ∗(A2) to be the nat
F ∗(α)B : F ∗(A1)(B) - F ∗(A2)(B) = F (α, idB).

Finally we need to show how ()∗ acts on natural transformations

t : F - G in CA×B. Let (t∗A)B = t(A,B). Finally show ( )* has a

2-sided inverse. The rest is left as an exercise.



Composing functors and natural transformations

Given

D L- A
F-
G-

H
- B K- C

and natural transformations t : F - G and u : G - H, we
define the compositions

I (Lt)D = tL(D) : LF (D) - LG (D)

I (tK )A = K (tA) : FK (A) - GK (A)

These compositions satisfy the following laws (exercise)

(tu)K = K (t)K (u) L(tu) = (Lt)(Lu)



Locally small and small categories

If the category A (the collection of arrows) is a set then A is said to be
small.

A is said to be locally small if for every pair of objects A,B the collection
of arrows from A to B, denoted A(A,B) or HomA(A,B), is a set.



Subcategories

A category B is said to be a subcategory of A if |B| is contained in |A|
and for every pair of objects B1,B2 of B

B(B1,B2) is contained in A(B1,B2)

B is said to be a full subcategory of A if for every pair of objects B1,B2

of B
B(B1,B2) is equal to A(B1,B2)

Ex.: Ab is a full subcategory of Grp.



Hom-functors

If C is a locally small category, then we have several functors to Set
induced by Hom-sets:

I HomC : Co × C - Set given by (A,B) 7→ C(A,B) on objects

and for A′
α- A and B

β- B ′ in C, C(α, β) is the function
C(A,B) - C(A′,B ′) given by f 7→ αf β.

A′

A

α

? f - B

B ′

β

?



Assume C is locally small.

I For each object B of C we have a contravariant functor
HomC( ,B) : C - Set given by

A 7→ HomC(A,B)

A′
α- A 7→ HomC(α,B) : HomC(A,B)

λf .αf- HomC(A′,B)



I For each object A of C we have a covariant (i.e. normal)
functor HomC(A, ) : C - Set given by

B 7→ HomC(A,B)

B
β- B ′ 7→ HomC(A, β) : HomC(A,B)

λf .f β- HomC(A,B ′)



Yoneda

Therefore the correspondence

B 7→ HomC( ,B)

gives rise to a covariant functor

y : C - SetC
o

known as the Yoneda embedding.



The action of y on arrows B
β- B ′ is β 7→ HomC( ,β), the latter

being the natural transformation

y(β) : HomC( ,B) - HomC( ,B
′)

whose action y(β)A : HomC(A,B) - HomC(A,B ′) is
post-composition with β:

y(β)A(f ) = f β



The Yoneda Lemma

Let Nat(X ,Y ) denote the collection of natural transformations
from X to Y .
If C is locally small, and F : Co - Set then for each B ∈ |C|

Nat(HomC( ,B),F ) ' F (B)



Proof: (sketch) Refer to the diagram below, assuming
f : A - B ∈ C
Define (̂) : Nat(HomC( ,B),F ) - F (B) by λ̂ = λB(idB)

idB ∈ Hom(B,B)
λB- F (B)

Hom(A,B)

Hom(f ,B)

? λA- F (A)

F (f )

?



Now define (̇) : F (B) - Nat(HomC( ,B),F ) by letting ḃ be the
natural transformation ḃA(f ) = F (f )(b).
It is straightforward to show that the two maps are inverses. (?
Exercise) Interestingly they are both natural in B and F .



Yoneda: corollary

Taking F to be Hom( ,A) for some A in |A| we have the following
special case:

Nat(Hom( ,B),Hom( ,A)) ' Hom(B,A)

i.e. every nat corresponds to an arrow.



Definition
A functor F is faithful if it is injective on arrows, i.e. if the induced
mapping: Hom(A,B) - Hom(F (A),F (B)) is injective. It is full
if this mapping is surjective. F is a full embedding if full, faithful
and injective on objects.



Theorem
The Yoneda functor is a full embedding

?Exercise. See e.g. Lambek-Scott





Adjoint Functors
In posets

One of the most important ideas in Category Theory is that of
adjoint functors. We will first look at how they are defined for
posets (or even pre-ordered sets), that is to say for categories
where there is at most one arrow p ≤ q between objects. Recall
that functors between posets are monotone maps.
Def. Let A and B be posets, F : A - B and G : B - A
functors. F is left-adjoint to G (written F a G ) if for all x , y

F (x) ≤ y iff x ≤ G (y)

Such a pair is also called a Galois correspondence in the pre-order
case given.



Adjoint Functors

?Notice that such a Galois correspondence gives rise to a closure
operation FG (i.e. G ◦ F ) satisfying

x ≤ FG (x) FGFG (x) ≤ FG (x) x ≤ y⇒FG (x) ≤ FG (y)

Also, for a ∈ A and b ∈ B

FGFG (a) ' FG (a) and GFGF (b) ' GF (b)

i.e. FG and GF create fixed points.



Equivalences

Thus, a Galois correspondence F a G determines an equivalence
between the pre-ordered set A0 of fixed points of FG and the
pre-order B0 of fixed points of GF i.e. between the “closed”
elements of A and the “open” elements of B.

A
F
-

�
G

B

A0

⊆

6

-�
'

B0

⊆

6

We will revisit this in a categorical setting soon.



Adjunctions

Let A
F-�
G

B be a pair of functors. F ,G are an adjoint pair ≡ F is

a left adjoint to G ≡ G is a right adjoint to F if there is a bijection

B(FA,B) ' A(A,GB)

natural in A and B for every object A in A and B in B.
Equivalently there is a natural isomorphism:

B(F ( ), ) ' A( ,G ( )) : Ao × B - Set.

Adjunction is signalled with the following notation:

F a G



Examples

For each set B let Let B × : Set - Set and
( )B : Set - Set be defined by

B × (A) = B × A and ( )B(C ) = CB

The “famous maps” curry and uncurry give inverse bijections
CB×A ' (CB)A i.e. between Set(B × A,C ) and Set(A,CB)



Let Prop be the poset category whose objects are propositions with
arrows F - G given by entailment. (This category will be
formalized later in the course).
Let ∆ : Prop - Prop× Prop (the so-called diagonal functor) be
given by ∆(A) = (A,A), with the obvious action on arrows.
Define ∨,∧ to be functors Prop× Prop - Prop with the
actions: ∨(A,B) = A ∨ B etc. and straightforward corresponding
actions on arrows. Then

∆ a ∧ and ∨ a ∆



Because we (easily) have

(A,A) - (B,C )

A - B ∧ C

and
B ∨ C - A

(B,C ) - (A,A)



The adjunction of wedge and ⊃

Let B ∧ and B ⊃ be the obvious functors from Prop to Prop.
They are adjoints (just like the proof of B × a ()B).



Free objects
...on sets

Let U be the “forgetful functor” (also called the “Underlying” functor)
from Set to Grp, the functor that maps each group to itself as a set
forgetting the algebraic structure.
Let S be a set. An object G in Grp is called a free object on S in its

category if there is an arrow S
g- U(G ) and for every group H and

every arrow (in Set) S
h- U(H) a unique group homomorphism

G
ϕ- H making the following diagram commute:

S
g- U(G ) G

U(H)

U(ϕ)

?

h
-

H

! ϕ

?

This is called the universal mapping property of free groups.



For every set S a free group F (S) on S exists (with the map from
S to U(FS) inclusion). Just take the set S ′ consisting of all
so-called words (strings) on S ∪ {s−1 : s ∈ S} with multiplication
given by concatenation but with adjacent “inverses” canceling. F

is really a functor: Set - Grp. It is immediate to check that
there is an adjunction

F a U



Adjoints: an alternative formulation

An equivalent formulation of adjunction is the following. Given

functors A
F-�
G

B we say that an adjunction (or adjoint situation)

is a four-tuple 〈F ,G , η, ε〉 where η : 1A : - FG and
ε : GF - 1B are natural transformations called the unit and
counit of the adjunction respectively, making the following
diagrams commute.



F
ηF- FGF

F

F ε

?

1
F

-

i.e. (ηF )(F ε) = 1F , and

G
Gη- GFG

G

εG

?

1
G

-

(Gη)(εG ) = 1G



Theorem
The two formulations are equivalent.

The unit and co-unit are easily obtained:

F (A)
id- F (A)

A
ηA- FG (A)

G (B)
id- G (B)

GF (B)
εB- B

.

Their naturality follows easily from the naturality of the bijection
B(FA,B) ' A(A,GB). The verification of the diagrams is left as
an ?exercise.



A third
Essentially the free object formulation

A solution to the universal mapping problem for a functor
U : B - A is given by the following data:
For each object A of A: an object F (A) of B and an arrow
ηA : A - FU(A) such that for each object B of B and each
arrow f : A - U(B) in A there is a unique arrow
f ∗ : F (A) - B in B such that η(A)U(f ∗) = f .

A
ηA- U(F (A)) F (A)

U(B)

U(f ∗)

?

f
-

B

! f ∗

?



If B is a full subcategory of A and U is the inclusion, then we say
that B is a reflective subcategory of A. (i.e. when inclusion has a
left adjoint). Remark: [Lambek-Scott] We can think of
ηA : A - F (A) as giving the best approximation in B of the
object A of A.
(famous examples: Abelian groups and Groups. Sheaves and
presheaves).



Theorem
There is a bijection between adjoint situations 〈F ,U, η, ε〉 and
solutions (F , η, ∗) of the universal mapping problem.

[see Lambek-Scott, MacLane]



Equivalence of Categories

Definition
An equivalence between categories A and B is a pair of functors

A
F-

�U B

where FU and UF are naturally isomorphic to the identity

FU ' 1A UF ' 1B



An equivalence gives rise to an adjunction in which the unit and
counit are isomorphisms (called an adjoint equivalence).



Theorem (Freyd, Lambek-Scott)

An adjunction 〈F ,U, η, ε〉 induces an equivalence between the
following full subcategories A0 of A and B0 of B

A0 ≡ Fixη ≡ {A ∈ |A| : ηA is an iso }
B0 ≡ Fixη ≡ {B ∈ |B| : εB is an iso }

ηU is an iso iff F ε is.

Examples abound in mathematics: A = Rings, B = Topo and
Stone duality. The correspondence between Sheaves and Local
Homeomorphisms.



Limits
Equalizers

Terminal objects and products are examples of limits in a category.
So are pullbacks and equalizers which we now define.

Definition

Let A
m-

n
- B be a pair of arrows in a category A. An equalizer of

this pair of arrows (i.e. of this diagram) is an object E together

with an arrow E
e- A such that

E
e- A

m-

n
-

commutes and such that for any other arrow C
f- A satisfying

fm = fn there is a unique arrow ϕE making the following diagram
commute



E
e
- A

m
-

n
- B

C

ϕE

6

f

-

Coequalizers: dualize the diagram.



Pullbacks (produits fibrés)

Given

B

C
f
- D

g

?

a pullback PB is a diagram C �
p2

PB
p1- A such that

PB
p1 - B

C

p2

?

f
- D

g

?



and given any other such diagram

Q
q1 - B

C

q2

?

f
- D

g

?

There is a unique Q - PB making the resulting diagrams
created commute.



Q

PB
p1
-

-

B

q1

-

C

p2

?

f
-

q
2

-
D

g

?

q2 is often called the pullback of g along f (and similarly with f
and q1).



? Exercise

The pullback of a monic is monic. The same with isos.



Limits

Idea: given a diagram D, a limit is an object L and a family of
arrows making all created diagrams commute (called a cone over
D)

L
λα- D

Such that given any other

M
δα- D



There is a unique M - L making all resulting diagrams
commute

L
λα - D

M

!

6

δ α

-

I.e. a limit is a terminal cone.



Formalizing the definition a bit...

So what’s a diagram in a category A? We can formalize it as a
functor ∆ from a category I (sometimes called the index category)
into A . Then we can define a cone in A as a pair (A, η) where
A ∈ |A| and η is a natural transformation

η : λx .A - ∆

from the constant A-valued functor:I λx .A- A to ∆. We then say
that the functor ∆ has a limit (L, λ) if it is a terminal cone, i.e. if
for any other (Q, ν) there is a unique arrow Q - L making all
created triangles commute.



Thus, informally,

I a terminal object is a limit of {•}.
I an equalizer is a limit of • -- •
I a product is a limit of {• •}
I a pullback is a limit of {• � • - •}

Dualize the definitions to obtain: initial object, coequalizer,
coproduct, pushout (somme amalgamé), colimit.



Some exercises:

I Limits are terminal objects in which category?

I Limits are unique up to isomorphism (any two limits of a
given diagram are isomorphic).

I Set has all small limits and colimits (i.e. it is complete).

I Left adjoints preserve colimits, right adjoints preserve limits.



Right adjoints preserve limits

Let A
F-�
G

B be an adjoint pair and let τ : λx .a - ∆ be a

limiting cone (we write this as: a
.- ∆ following MacLane).

Each arrow in the limiting cone is of the form τ(i) : a - ∆(i).
Apply the functor G to this cone. We will show we get a limiting

cone: τG : G (a)
.- ∆G



Let σ : x
.- ∆G be a cone over ∆G . Each arrow

σi : x - G (∆(i)) gives rise (by the adjunction) to an arrow

σ∗i : F (x) - ∆(i) i.e. a cone σ∗ : F (x)
.- ∆ over ∆. But τ

is a limiting cone. So there exists a unique arrow h : F (x) - a
making all induced diagrams commute (ie. hτ = σ∗).

∆

F (x)

σ∗
6

h
- a

�

τ



By adjunction we get a unique arrow h∗ : x - G (a). One must
check that (hτ)∗ = h∗(τG ) = σ.

∆G

x

σ

6

h
- G (a)

�

τG

So h is a unique arrow making all diagrams commute. Hence

τG : G (a)
.- (∆G ) is a limiting cone, as we wanted to show.



Some other important results about limits

I Hom(A, ) : C - Set preserves all existing limits.

I SetC
o

is complete.

I A category with a terminal object and pullbacks is complete.

I A category with equalizers and all small products is complete.

(see Borceux)



Monads

We saw that in a Galois correspondence F a G between A and B
we can conclude that for every A in A

A ≤ FG (A) and FGFG (A) ≤ FG (A)

We have similar results for adjoints. A straightforward argument

from the definition yields natural transformations 1A - FG
(namely the unit) and FGFG - FG . These properties are of
independent interest.



A Functor T : A - B is a monad if it is equipped with natural
transformations

I η : 1A - T , and

I µ : TT - T

making the following diagrams commute.



T
ηT
- T 2

T 2

Tη

?

µ
- T

µ

?

1

-

and

T 3 µT
- T 2

T 2

Tµ

?

µ
- T

µ

?



Theorem
If F a G then 〈FG , η,F εG 〉 is a monad.

I From GF
ε- id we get

I FGF
εF- F , i.e. FGF

F ε- F . Now apply G

I FGFG
F εG- FG .



Recall: The adjunction (F ,G , η, ε) satisfies (ηF )(F ε) = 1F and
(Gη)(εG ) = 1G
We must now check the commutativity of

FG
ηFG
- FGFG

FGFG

FGη

?

F εG
- FG

F εG

?

1
FG

-

i.e.

I (ηFG )(F εG ) = 1FG , which, by functoriality of G is
(ηF )(F ε)G which is 1FG , i.e. 1FG , and



I (FGη)(F εG ) = 1FG which is also immediate:
F (Gη)(εG ) = F1G = 1FG .



Examples

I The closure operator in a topological space: Let T (S) for any
subset S of X be the intersection of all closed sets containing S .
T : 〈P(X ),⊆〉 - 〈P(X ),⊆〉 is a monad: S ⊆ T (S) and
T (T (S)) ⊆ T (S)



More examples

I Let M be a monoid with unit 1 and underlying set M. For
each set S define T (A) = M × A and ηA : A - M × A via
ηA(a) = (a, 1) and µ(A) : M × (M × A) - M × A via
µ(m1, (m2, a)) - (m1m2, a).

Let T (A1
α- A2) be the function (m, a) 7→ (m, α(a)).

〈(〉T , η, µ) defines a monad. The monad laws here stipulate
m1 = m = 1m and (m1m2)m3 = m1(m2m3) (hence the
names unity and associative laws).



More examples

Let P be the covariant power set functor Set - Set mapping

sets A to P(A) and maps A
f- B to the function

P(f ) : P(A)
Imf- P(B). Define the natural transformations

η : 1 - P and µ : PP - P by: ηA(x) = {x} and µS =
⋃
S

sending each subset of A to its image under f . (This map is
sometimes called ∃f ).



Does every monad arise as a composition of adjoint functors?



Adjoint resolutions

The answer is yes, given a monad (T , η, µ) on A there is a
category of so-called adjoint resolutions (B,F ,G , ε) of a monad.
These are given by an adjoint pair of functors F ,G from A to B
with unit η and counit ε satisfying F εG = µ. Arrows in this
category are morphisms Φ : (B,F ,G , ε) - (B′,F ′,G ′, ε′) that
satisfy:

B

A

F

-

A

G

-

B′

Φ

?
G
′

-

F ′
-



The category of adjoint resolutions of T has

I A initial object AT called the Kleisli category of T (the
category of free T -algebras)

I A final object AT called the Eilenberg-Moore category of T
(the category of T -algebras).

Given an adjoint resolution (B,F ,G , ε) for T , the unique arrows
KT : B - AT and KT : AT

- B are called the comparison
functors. The case where the comparison functors give rise to an
equivalence of categories is of special interest. (See MacLane or
Lambek-Scott for details).
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