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Categories and Logic



Overview...from Tarski to Lawvere





Tarski Models for many-sorted logic

Let M be a model of first-order many-sorted logic. i.e. over a
language with basic sorts S = {s1, . . . , sn, . . .}, compound sorts or
types which are sequences of basic sorts including the (empty)
sequence 1, and arrow expressions σ1

- σ2 where σ1 is a
sequence of basic sorts, and σ2 is a basic sort, and typed

I constant symbols c : α

I function symbols f : α→ β

I relation (predicate) symbols p : α (e.g. prime : int)



Tarski Models for many-sorted logic
Interpretation

M is equipped with an interpretation function J K, which maps
sorts σ to sets (or domains) Mσ, and extends to compound sorts
via Js1 · · · snK = Js1K× · · · × JsnK
Furthermore in M we interpret

I constants c of type α as members of JαK ≡Mα,

I function symbols f : α→ β as functions Jf K : JαK→ JβK,

I relation symbols p of type σ as subsets JpK ⊆ JσK.



Interpreting open terms and formulas in M

We start by fixing a sequence ~x of variables x1 : α1, . . . , xn : αn

containing all free variables occurring in interpreted terms and
formulas. Letting ~α = α1 · · ·αn, we can now assign an
interpretation J K = J KM~x relative to ~x of all open terms and
formulas as follows.



I JxiK is the ith projection function: J~αK→ JαiK,

I Suppose f is a function symbol of type: σ → ρ, where
σ = σ1 · · ·σk and ti are terms of sort σi . Then
Jf (t1, . . . , tk)K = 〈Jt1K, . . . , JtnK〉Jf K.
Notice that this is a function from the domain J~αK to JρK:

J~αK
〈Jt1K,...,JtnK〉- JσK

f- JρK

I If p is a relation symbol of sort σ then
Jp(t1, . . . , tk)K = J〈t1, . . . , tn〉K−1(JpK). This formulation of
the meaning of atomic formulas coincides with the usual
definition in Tarski semantics. Taking a special case in
one-sorted logic

Jp(f (x))K = {a : M |= p(f (a))} = {a : Jf K(a) ∈ JpK} = Jf K−1(JpK)



Connectives. . .

In classical logic we interpret Boolean connectives ∧,∨ using
⋂
,
⋃

,
and negation with complementation.



. . . and quantifiers

Let σ1, σ2 be sorts and π the projection of Jσ1 × σ2K to Jσ2K. In
the setting just given, quantification ∃x , ∀x of a formula ϕ with
two free variables x and y of sorts σ1 and σ2 can be captured using
the operations ∃π, ∀π : Sub(Jσ1 × σ2K)→ Sub(Jσ2K) given by



quantifiers (cont.)

∃π(S) = {b ∈ Jσ2K | ∃a ∈ Jσ1K (a, b) ∈ S}
= Im(π)

∀π(S) = {b ∈ Jσ2K | ∀a ∈ Jσ1K(a, b) ∈ S}.

Thus, J∃x .ϕK = ∃πJϕK and J∀x .ϕK = ∀πJϕK yield precisely the
interpretation of quantifiers given by Tarski semantics.



Lawvere observed in the 1960’s that these operations are precisely
the left and right adjoints of the inverse image

π−1 : Sub(Jσ2K)→ Sub(Jσ1 × σ2K)

or, in lattice theoretic terms, that the pairs 〈∃π, π−1〉 and
〈π−1, ∀π〉 each form a Galois correspondence. We illustrate this in
the diagram below, where π is generalized to an arrow
JtK : JσK→ JρK, the interpretation in Set of the term t.



The definitions for such a general f = JtK, with f : JσK→ JρK and
S ⊆ JσK are

∃f (S) = {b ∈ JρK | ∃a ∈ JσK (f (a) = b ∧ a ∈ S)}
= Im(f )

∀f (S) = {b ∈ JρK | ∀a ∈ JσK(f (a) = b⇒ a ∈ S)}.
= {b ∈ JρK : f −1(b) ⊆ S}



They really are adjoints: ∃f a f −1 a ∀f

S ⊆ f −1(T )

∃f (S) ⊆ T

and
S ⊆ ∀f (T )

f −1(S) ⊆ T



Set
JσK -

��� JtK−1

-∃JtK

-∀JtK

JtK

��Sub(JσK)

Jp(t)K

D
D
D
D
D
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�
��

JρK

��Sub(JρK)

JpK
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D
D
D
D
DD
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�
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�
�
��



Logic in LP Doctrines

The same definitions just given for interpreting terms, formulas,
types in a model, make sense if we take an indexed category
P : C→ Cat where

I C has products and a terminal object, and plays the role of
Set in interpreting types and terms.

I For each object A = JσK of C the fiber P(A) interprets
predicates p of type σ as objects. For each arrow (term)

A
t- B in the base category, the functor Pt : P(B)→ P(A)

plays the role of t−1 in the Set based model.



Indexed Categories

The following diagram illustrates the fundamental components of
an indexed category:

C
(states, sorts)

σ -

���

f

P(f )
(substitutions)

��
Pσ

(goals,
proofs)

B
B
B
B
B

�
�
�
�
�

ρ

��
Pρ

B
B
B
B
B

�
�
�
�
�

For future reference, we have also indicated the logic programming
concepts (goals & proofs, substitutions, states & sorts)
formalized by these components.



Taking this one step further we can view an indexed category as a
logic taking

I objects/arrows in the base as types and terms

I objects in the fibers as predicates,

I operations and structure in the fibers as connectives.

I arrows between predicates as proofs

I functors between fibers as generalized substitutions

I adjoints to these functors as generalized quantifiers

...although the quantifiers will not necessarily be well behaved
unless they satisfy certain (Beck and Frobenius) conditions.



Step 1: Sorts and Terms in an FP (finite product +
terminator) category

Start with an FP category C, a many-sorted first order signature
(S ,Σ,Π) where

I S is a set of primitive sorts

I Σ is a set of function symbols accompanied by their sorts
(f , σ) with constants represented as pairs (c , (·) - σ)

I Π is a set of predicate symbols accompanied by their sorts
(p, σ)

and finally a set of sorted variables V .



Definition
A C-structure on (S ,Σ,Π) is a function M that maps

I each primitive sort σ to an object M(σ) of |C|
I each compound sort σ1 · · ·σn to M(σ1)× · · · ×M(σn)

I each function symbol of sort σ1 · · ·σn - ρ to an arrow
M(f ) : M(σ1)× · · · ×M(σn) - M(ρ). Constant symbols

are mapped to arrows: 1
M(c)- M(σ)



M maps predicate symbols (p, σ) to monic arrows
p- M(σ) We

will often abuse language and write M(p) - M(σ).

Remark: A more general framework is obtained by mapping predicates

to any class of arrows that are stable under pullbacks.



Terms

A C-structure M induces an interpretation for all open terms over
V . Given a sequence ~x = 〈x1, . . . , xn〉 of variables, with xi of sort
σi , we define M(~x) = M(~σ) = M(σ1)× · · · ×M(σn). Given a term
t of sort ρ all of whose variables are among ~x , we define the arrow
M~x(t) : M(~x) - M(ρ) as follows:



I t = xi: M~x(xi ) is the projection πi : M(x) - M(σi ). In this
case ρ is σi .

I t = c: For a constant c of sort ρ, M~x(c) is defined as the
following composition:

M(~x)
!M(~x)- 1

M(c)- M(ρ)

I t = f(t1, . . . , tn): If each ti is of sort αi , the M~x is the
following composition:

M(~x)
〈M~x (t1),...,Mx(tn)〉- M(~α)

M(f )- M(ρ)



Given enough pullbacks, it is possible to interpret in C atomic
formulas of first-order logic. Recall that for every predicate symbol
p of Π of sort σ1 · · ·σn we have a monic M(p) - M(~σ). For an
atomic formula φ = p(t1, . . . , tn) with all variables among ~x , we
interpret M~x(φ) as the pullback of the monic M(p) - M(~σ)
along the arrow 〈M~x(t1), . . . ,M~x(tn)〉:

M~x(φ) - M(p)

M(~x)
? 〈M~x(t1), . . . ,Mx(tn)〉

- M(~σ)
?



We will say that the formula φ is true in the interpretation when
Mx(φ) - M(x) is an isomorphism. In the category Set this
coincides with the usual definition of truth in Tarski semantics, i.e.
every member of the interpretation of the sort of φ is in M~x(φ).



Substitutions

Let θ = {x1/t1, . . . xn/tn} be an idempotent substitution1. Assume
that all the variables in t1 . . . tn are in the sequence ~y . Then one
can define a corresponding categorical substitution Θ~y as the
arrow:

M(~y)
〈M~y (t1),...,M~y (tn)〉

- M(~x)

1θθ = θ iff domθ ∩ FV (rangeθ) = ∅.



?Exercise

It is easy to prove by structural induction (on s) that given a term
s all of whose variables are among ~x

M~y (sθ) = Θ~yM~x(s).

Note: make use of (and prove) the fact that h〈u, v〉 = 〈hu, hv〉.



Application of the substitution θ to an atomic predicate φ whose
sort is M(~x) is accomplished by taking the pullback of the monic
M~x(φ) along the arrow Θ~y just defined.



Unifiers

Given two terms s and t of the same sort ρ with all variables in ~x ,
if θ is a unifier, then Θ~y equalizes M~x(s) and M~x(t), i.e., makes
the following diagram commute

M(~y)
Θ~y- M(~x)

M~x (s)-

M~x (t)
- M(ρ)

In the appropriate category, if θ is a most general unifier, Θ~y is an
equalizer and conversely.



A canonical FP category for logic programming
Lawvere’s pure algebraic theory LAT (Σ)

Let (S ,Σ,Π) be a signature where S consists of a single sort ι
representing the single type of terms in the Herbrand Universe. Let
LATΣ(∅) be the category with

I objects: The natural numbers

I arrows: a distinguished arrow f from n to 1 for each function
symbol of arity n in Σ. In particular an arrow c from 0 to 1
for each constant symbol c , together with all the projections
and diagonal maps (and compositions thereof) required to
make LATΣ(∅) into a finite product category, with the
product of n and m given by n + m.



A more formal approach: make LATΣ(∅) the opposite category of
the category Ord of finite ordinals with all set-theoretic maps
between them. Thus we have, for example

1
�π0

δ-�
π1

2

Now freely adjoin the function symbols to the underlying graph of
this category and freely generate the finite product category with
this graph. [See Lambek-Scott: Free cartesian closed categories
generated by graphs and Polynomial categories]

Finally define M so that M(c) = 0
c- 1 and M(f ) = f .



We should think of each object n as representing Hn where H is
the Herbrand Universe for Σ. Then we have the following lemma,
which we state without proof.

Lemma
In LATΣ(∅), given two arrows M~x(u) and M~x(t) with the same
source n and target 1, the substitution θ is a most general unifier
of u and t iff Θ~y as defined above, is an equalizer of M~x(u) and
M~x(t).



Consider the (idempotent) mgu θ = {y/f (z , z), x/z} of the two
terms g(f (x , x)), g(y). Giving them the common sort
M(x)×M(y) = n2:

n2
l- n1

〈id ,id〉- n2
f- n1

g- n1

n2
r- n1

g- n1



The equalizer is Θz

M(z) = n1
〈id ,Mz (f (z,z))〉- n2 = n1

〈id ,〈id ,id〉f 〉- n2

i.e.

n1
〈id ,〈id ,id〉f 〉- n2

l〈id ,id〉fg-
rg
- n1



Note that (?exercise): given A
t- C and B

u- C , the
equalizer

E
e- A× B

lt-

ru
- C

is the pullback of

A

B
u
- C

t

?

So we may use pullbacks instead of equalizers (provided we want
to standardize apart the variables of t and u).



If we want t, u to share variables, we need a common domain to
express this, e.g. {g(f (x , y)), g(y)} as

n2

〈π1,π2〉fg-
π2g
- n1

or, equivalently

n2

fg-

π2g
- n1



Another example of a base category

Now we consider a different base category C.



Building in Equational Theories

Let TN be the set of atomic equations true in the natural numbers N. We
now describe LAT (TN) Form the LAT with objects nk one for each of the
natural numbers k and with proto-arrows

I + : n2
- n1

I × : n2
- n1

I n0
k- n1 for each natural number k

I All arrows defining a category with products nk × nj = nk+j (e.g. all
〈f , g〉, all projections) and terminal object n0



Let ≡ be the congruence relation on arrows induced by all FP
category equations e.g. h〈f , g〉 = 〈hf , hg〉, 〈π0h, π1h〉 = h, f ! =!,
etc. and all equations in T .
Now take arrows to be equivalence classes modulo ≡. Thus, e.g.
[〈2, 2〉+] = [〈〈2, 2〉×〉]



Attaching generic predicates

Definition (Generic Predicates)

Let X be a subobject of some object b in a finite product category
C, and let D be a family of arrows in C.
We say X is a generic subobject of b with respect to the
(display) maps D if

I For every arrow t in D targeted at b the pullback t#(X )
exists.

I No such pullback is an isomorphism.



Definition (The category C[X1, . . . ,Xn])

Let C be an FP category and ~b = b1 · · · bn a sequence of objects of
C. Then C[~b] (or C[X1, . . . ,Xn]), the category obtained from C by
freely adjoining indeterminate subobjects of ~b, is defined as follows:



objects: pairs 〈A,S〉 where A ∈ |C| and S is a sequence S1 · · · Sn
of finite sets Si ⊂ HomC(A, bi ),

arrows: triples 〈A,S〉 f- 〈B,T 〉 where A
f- B is an arrow in

C and fT ⊂ S , that is to say, for every i , (1 ≤ i ≤ n) and
every t ∈ Ti , fti ∈ Si . The arrow f in C is called the label

of 〈A,S〉 f- 〈B,T 〉. Composition of arrows is inherited

from C. Two arrows 〈A,S〉 f- 〈B,T 〉 and

〈A′,S ′〉 f ′- 〈B ′,T ′〉 are equal if they have the same
domain and range and if f = f ′ in C.

We also call C[X1, . . . ,Xn] the category of generic predicates of sort ~b.



Notice that an arrow in C[X1, . . . ,Xn] may have an identity arrow
in C as a label, and not even be an isomorphism in C[X1, . . . ,Xn].
We will be paying special attention to a certain class of such
arrows.



Theorem
Let C be an FP category. The category C[X1, . . . ,Xn] has

I a terminal object 〈1,~∅〉, where ~∅ is the sequence ∅, . . . , ∅ of
length n,

I products: 〈A, S〉 × 〈B,T 〉 = 〈A× B, π1S ∪ π2T 〉 where

A �
π1

A× B
π2- B is a product in C.

Furthermore, the functor C ι- C[X1, . . . ,Xn] given by mapping

objects A to 〈A,~∅〉 and arrows A
f- B to 〈A,~∅〉 f- 〈B,~∅〉, is

a limit-preserving, full and faithful embedding.



Functoriality, faithfulness and fullness is obvious from the definition
of morphism, composition and equality in C[X1, . . . ,Xn]. Limit
preservation follows from the fact that ι has a left adjoint, namely
the forgetful functor U taking objects 〈A, S〉 to A and arrows to
their labels.



Definition
In C[X1, . . . ,Xn] define the indeterminate subobjects X1 · · ·Xn of
sorts b1 · · · bn respectively, to be the subobjects

〈bi , J i 〉-
idbi- 〈b,~∅〉, where the J i are the basis vectors

(J i )k =

{
∅ if i 6= k
{idbi} o.w.



Theorem
The indeterminate subobjects Xi of bi are generic with respect to

the maps in the image of HomC( , bi ) under C ι- C[X1, . . . ,Xn].



The following diagram is a pullback for any arrow

〈A,~∅〉 t- 〈bi ,~∅〉:

〈A, tJ i 〉
t
- 〈bi , {J i}〉

〈A,~∅〉

idA

?

?

t
- 〈bi ,~∅〉

idbi

?

?

so X (t) = 〈A, tJ i 〉- idA- 〈A,~∅〉 exists for all appropriate t. This
arrow cannot be an isomorphism in C[X1, . . . ,Xn]: its inverse,
which would have to be labelled with idA, would have to satisfy
idAt ∈ ∅.



Definition
An object 〈A,H〉 is atomic if H is of the form tJ i for a basis
vector J i and some arrow A

t
- σi . That is to say, H is the

formula Xi (t).



Definition
If A is an object of C, we say that the monic 〈B,S〉- f- 〈A,~∅〉 is

a canonical (representative of a) subobject of 〈A,~∅〉 if B is A and
the monic f is idA.



The following theorems make precise the fact that C[X1, . . . ,Xn] is
called the category obtained by freely adjoining the indeterminate
subobjects of the sorts b1 · · · bn.

Lemma
Every object 〈σ, S〉 is representable as (i.e. equal on the nose to)
the canonical intersection⋂

{t#(Xi ) : t ∈ Si , 1 ≤ i ≤ n}

where the pullbacks are canonical:
t#(Xi ) = 〈σ, tJ i 〉 = 〈σ, ∅ · · · ∅ {t}︸︷︷︸

i

∅ · · · ∅〉.

Proof.
Immediate: Since Si =

⋃
{{t} : t ∈ Si}, the indicated canonical

intersection is precisely 〈σ, S〉.



Theorem (Universal Mapping Property)
Suppose F : C→ D is a limit preserving functor from the finite-product
category C to the finitely complete category D, and that F (bi ) = di for

1 ≤ i ≤ n. Furthermore, let ~B = B1 · · ·Bn be a sequence of subobjects of
d1 · · · dn respectively, in D. Then there is a limit-preserving functor
F~B : C[X1, . . . ,Xn]→ D, unique up to isomorphism, such that the
following diagram commutes and F~B(Xi ) = Bi .

C[X1, . . . ,Xn]

C
F

-

ι

-

D

F
~B

-

F~B is called the evaluation functor induced by the Bi .



Proof.
? Define F~B on objects by

F~B(〈σ, S〉) = lim←{F (t)#(Bi ) : t ∈ Si , 1 ≤ i ≤ n}

The universal mapping property of limits gives us the action on arrows: if

〈σ, S〉 f- 〈σ′,S ′〉 is an arrow in C[X1, . . . ,Xn] then F~B(〈σ, S〉), the

limit of the family of monics {F (t)#(Bi ) : t ∈ Si , 1 ≤ i ≤ n} targeted at

F (σ), is also, by composing with F (σ
f- σ′) and using properties of

pullbacks and of arrows in C[X1, . . . ,Xn], a cone over the family of

monics {F (t)#(Bi ) : t ∈ S ′i , 1 ≤ i ≤ n}. There is therefore a unique

induced arrow F 〈σ, S〉 θ- F 〈σ′,S ′〉 which is the value of

F (〈σ, S〉 f- 〈σ′,S ′〉). The details, and those of the proof of limit

preservation, are left to the reader.



We are interested in a category D with richer structure, in which
case we are able to sharpen this result a bit.

Corollary

Assume the category D in the preceding theorem is SetC
o

and that
F is the Yoneda embedding. Choose the sequence of subobjects Bi

of Fbi = HomC( , bi ) to be canonical, that is to say, pointwise
subsets of Fbi , and take limits in SetC

o
to be given pointwise (not

just up to isomorphism, but on the nose). Then the evaluation
functor F~B of the preceding theorem is unique.



On the subobject lattices of C( , σ) in SetC
o



Subobject structures

In any category a subobject of another object B is a monic m
targeted at B. We can define a preorder on subobjects of B as
follows:

m1 ≤ m2

iff there is a (necessarily monic) arrow h such that

.
h

- .

B
�

m 2

m
1

-



Two subobjects m1 and m2 are equivalent (m1 ' m2) if m1 ≤ m2

and m2 ≤ m1. This defines an equivalence relation on the
collection of subobjects of B. The equivalence classes are usually
what is meant by subobjects of B (rather than their members).
The collection of SubC(B) of all such equivalence classes is called
the subobject poset of B. Categories are often classified according
to how much structure there is in SubC(B) (e.g. semilattice,
lattice, complete lattice, Heyting algebra, Boolean algebra)

? Exercise: Equivalent subobjects are isomorphic.



Two abuses of language

I calling the individual monics subobjects (as we have already
done).

I calling the domain A of a monic A
m- B a subobject of B.

We sometimes do this in the category SetC
o
, especially when

m is containment.



In our semantics we will be extending functors from C[X1, . . . ,Xn]
to SetC

o
that send goal formulas G of type σ of |C| to subobjects

(i.e. subfunctors) of the so-called representable functors C( , σ).
We will refer to such subobjects F as canonical if F ⊂ C( , σ), i.e.
if for every ρ ∈ |C| F (ρ) ⊂ C(ρ, σ)

G F

7→
-

σ
?

..................
C( , σ)

⊆

?

................



Functors and co-sieves2

We can think of any canonical subfunctor of the representable
σ̂ = C( , σ) as being a class of arrows: namely a subclass of all the
arrows targeted at σ.

2cribles



Lemma
A subclass F of C( , σ) is a subfunctor iff it is a co-sieve: a class of
arrows (targeted at σ) closed under left composition.

i.e. ρ
f- σ ∈ F and g ∈ C(α, ρ) ⇒ gf ∈ F

Proof: ?exercise.



Theorem
In SetC

o
the class Sub(C( , σ)) of subobjects of any representable

functor forms a complete Heyting algebra, i.e. a distributive lattice
with

I suprema F1 ∪ F2 and
⋃
S (of finite and arbitrary sets of

subobjects)

I infima F1 ∩ F2 and
⋂
S

I exponents F1⇒F2



Let S be a class of arrows targeted at some object σ of C. Define
its interior Int(S) to be the largest co-sieve contained in S . Then
we can define implication in Sub(σ) by

F1⇒F2 = Int(F1 ∪ F2)

?Exercise:

F1⇒F2 = {f : gf ∈ F1 → gf ∈ F2}



Since ∩ and ∪ map pairs of co-sieves to co-sieves, the sup and inf
operations are well defined.



? In general, complementation does not preserve co-sieve structure
unless C has all maps isos (i.e. is a groupoid).



If we define falsity ⊥ as the constantly empty-valued functor we
can define negation (pseudo-complementation) of a subobject
(using the canonical representatives, i.e. the co-sieves) via F ⇒⊥,
i.e. the interior of the complement.
Truth > is the full subobject of C( , σ). I.e., taking canonical
representatives, it is C( , σ) itself.



Taking ∨,∧, ⇒ as logical connectives, defining the internal logic
of SetC

o
, we do not have

F ∨ ¬F ' > or ¬¬F ' F

i.e. the internal logic (if C is not a groupoid) is intuitionistic.



If C is a groupoid Sub(C( , σ)) has only two elements.



Predicates via indexed categories

The dependency of predicates on sorts (and later on underlying
programs or states) is nicely captured and generalized via indexed
category structure. Indexed categories resolve logic and logic
programing structure in a clean way into a (vertical) basic logical
component (the structure in the fibers) and the (horizontal)
predicate logic and substitution component, which, as we shall
soon see, is a special case of state change in logic programming.



Definition
A strict indexed C-category (or just a C-category) is a functor

C P- CAT.

An indexed functor from one C-category p to another q is just a
natural transformation from p to q. The category Pσ associated
to the object σ of the base category C is called the fiber at σ. To

each arrow σ
f- ρ between objects in the base category, P

associates a functor Pf between the fibers.



If we relax the conditions to pseudofunctors then we have a
(non-strict) indexed category. A pseudofunctor P : A→ B only
preserves composition and identity up to (coherent) isomorphism:

P(fg) ' P(f )P(g) P(idA) ' idP(A)

Notice that pullback f # along an arrow f defines a pseudofunctor
since (fg)# ' f #g#. They are not necessarily equal. Often
pullback is just defined up to isomorphism.



However we will assume we are working in a strictly associative
product category, with canonical pullbacks. See τ categories
[Freyd-Scedrov]. Thus our first examples of predicate (indexed)
categories will be strict.



Generic predicates as an indexed category

Definition
Let C be a τ category and b = b1 · · · bn be a sequence of objects
of C. Then

Πb : C - CAT,

the indexed cartesian category of generic predicates with sort b, is
defined as follows. Each fiber Πb(σ) has objects the members of

FinPow(C(σ, b1))× · · · × FinPow(C(σ, bn))

where FinPow denotes the finite power set, i.e. sequences
S = S1 · · · Sn where each Si is a finite set of arrows from σ to bi ,
further endowed with the poset operation of pointwise
containment: S ≤ T iff for all i Si ⊆ Ti .



To indicate the fiber in question, we will sometimes write objects
as pairs 〈σ, S〉. The action of Πb on arrows is given by

Πb(σ
f- ρ) = f # : Πb(ρ) - Πb(σ)



Building a category of formulas

Definition
Let C be a finite-product category and b = b1 · · · bn a finite sequence of
objects of C. A generalized first-order category of formulas (FOCF) F
over C with signature

def≡ d1 · · · dn of sort b is a predicate category with
the following additional structure:



1. Every fiber F(σ) has an object >σ.

2. there are C-indexed covariant bi-functors

∨,∧ : F× F - F

and a bi-functor
⇒ : F× F - F

contravariant in its first coordinate and covariant in its second.

3. for every σ
f- ρ ∈ C there are functors

∃f ,∀f : F(σ) - F(ρ)



Definition
A categorical signature is a triple (K,D,B) where K is a finite
product category, D a family of arrows in K and B a distinguished
class of monics in K satisfying the following condition: the
pullback of any m in B along any coterminal arrow in D exists. D
is usually taken closed under composition.



The generic predicate category C[X1, . . . ,Xn] gives rise to the
following signature:

(C[X1, . . . ,Xn], ι(C), {X1, . . . ,Xn})



Objects ocurring as sources or targets of members of D or targets
of members of B are called sorts.
Arrows f : σ - ρ of D are called terms of insort σ and outsort
ρ. An arrow whose source is the terminal object and whose target
is a sort σ is called a constant of sort σ. Members of B are called
predicate tokens. The target of a predicate token is its sort.

We will say that a sort (i.e. an object of K ocurring as a source or
target of a member of D or B) is an “object of D”.



An example: formula diagrams

Let (K,D,B) be a categorical signature. A formula diagram P of
sort σ over (K,D,B) is a labelled diagram with a distinguished
object σ of D. For the purposes of this definition, such diagrams
will be displayed as a bubble over a distinguished sort, as follows

σ

����
P



The class F(K,D,B) of formula diagrams over (K,D,B) is given
by the following inductive definition.

I For any object σ in K, the identity arrow σ ==== σ is a
formula diagram of sort σ, called >σ.

I The pullback along an arrow σ
t- ρ in D of any predicate

token X of sort ρ is a formula diagram X (t) of sort σ. It is (a
fortiori) monic, and is called an atomic formula diagram.

X (t)

σ
?



If P and Q are formula diagrams of sort σ (shown on the left),
then so is the labelled diagram P ~ Q (shown on the right) below,

σ

����
P

σ

����
Q

σ

���� ����
P Q

\
\
\
\\ ~

�
�
�
��

where ∗ is either the label ⇒, or ∨ or ∧.



If P is a formula diagram of sort ρ and ρ
f- σ is an arrow in D,

then the diagrams

ρ

����
P

?
σ

f ,∃

ρ

����
P

?

f ,∀

σ

are formula diagrams of sort σ, referred to as ∃f P and ∀f P
respectively.



If P is a formula diagram of sort ρ and if α
t- ρ is an arrow in D, then

the formal pullback (t)#(P) is a formula diagram of sort σ, given by the
following inductive definition:

1. if A is a predicate token then (t)#(A) is just the normal pullback of
A along t in K.

2. (t)#(P ~ Q) = (t)#(P) ~ (t)#(Q)

3. (t)#(∃f P) = ∃g ((u)#(P)) where the bottom square in the following
diagram is a (labelled) pullback:



η

����
u#P

?
α

g ,∃

-

-

ρ

����
P

?

f ,∃

σt

u

For the instance to exist, the lower pullback must exist (in C).



Program Syntax

We recall that uniform programming languages are given by the
following data: a set of program formulas P and a set of goal
formulas G recursively interdefined, as well as a notion of
operational derivation `o of sequents P `o G where P is a finite
subset of P and G ∈ G. The sets P and G for Horn(C) and
WHH(C) are defined below.



In each of the cases, formula will mean formula diagram over the
categorical signature C [X ]. In particular atomic formulas will be of
the form A = (u)#(Xi ) for some Xi ∈ X . >α will mean the
identity α ==== α for any object α.



Definition

I Horn(C) program formulae D and goal formulae G over a
categorical signature are given by:

G ::= > | A | G ∧ G | G ∨ G

D ::= A | G⇒A | D ∧ D | ∀x :αD

I WHH (C) program formulae and goal formulae over a
categorical signature are given by:

G ::= > | A | G ∧ G | G ∨ G | D⇒G | ∃x :αD

D ::= A | G⇒A | D ∧ D | ∀x :αD



Given a base category C define a WHH structure to be a triple of
C-indexed categories

Goal,Atom,Prog : C - CAT

endowed with the following indexed category morphisms:



I ⇒ : Goal× Atom - Prog

I ∧ : Prog× Prog - Prog

I ∧,∨ : Goal× Goal - Goal

I →: Prog× Goal - Goal



satisfying

1. Atom ⊆ Goal

2. Atom ⊆ Prog



Furthermore, for each σ
θ- ρ in C, there are functors

1. ∃θ : Goal(σ) - Goal(ρ)

2. ∀θ : Prog(σ) - Prog(ρ)



Clauses

In order to recapture the familiar notion of program as a set of
clauses or formal sequents, with a head and tail, we carry out the
translation described below. This translation process yields
constituent clauses while cumulatively computing the sort
extension that is taking place as quantifiers are removed. The
effect of the translation is to replace outermost conjunctions with
(finite) sets of formulae, and further translate the formulae by

I removing outer occurences of universal quantification, and

I replacing atoms A by the equivalent clause >⇒A, where
> = >σ has the same sort as the atom A.

We obtain clausal formulae of the form

tlcl⇒ hdcl(tmcl)

accompanied by a sort-extending substitution (i.e. a projection).



Definition
We inductively define the translation κ by

I κ(ϕ,A) = {(ϕ,>⇒A)}, > of the same sort as A.

I κ(ϕ,G⇒A) = {(ϕ,G⇒A)}
I κ(ϕ,P1 ∧ P2) = κ(ϕ,P1) ∪ κ(ϕ,P2)

I κ(ϕ,∀f :α→βP) = κ(f ϕ,P).



States and state vectors

Definition
Let C be an FP category and σ an object in C. A σ-state is a pair
〈P | A〉σ where P is a program diagram over C of sort σ and A a
goal diagram over the same category and sort. When clear from
context, mention of the sort σ may be omitted.
A state vector is a finite sequence
〈P1 | A1〉 & · · · & 〈Pi | Ai 〉 & · · · & 〈Pn | An〉 of σ-states of the
same sort and signature.



Resolution reduction rules

backchain

〈P1 | A1〉 & · · · & 〈Pi | Ai 〉 & · · · & 〈Pn | An〉
θπ,(G⇒A′

i )
;

〈(π#P1)θ | (π#A1)θ〉 & · · · & 〈(π#Pi )θ | Gθ〉 & · · · & 〈(π#Pn)θ |
(π#An)θ〉

for atomic formula diagrams Ai , clause diagrams (G⇒A′i ) and
substitution arrows θπ, where

I (π,G⇒A′i ) ∈ κ(Pi )

I θ is a unifier of the (sort-extended) atomic goal diagram π#Ai and
the head A′i of the selected clause.



augment:

〈P1 | A1〉 & · · · & 〈Pi | A⇒B〉 & · · · & 〈Pn | An〉
A
;

〈P1 | A1〉 & · · · & 〈Pi ∧ A | B〉 & · · · & 〈Pn | An〉



instance 〈P1 | A1〉 & · · · & 〈Pi | ∃x :αAi 〉 & · · · & 〈Pn | An〉
π
;

〈π#P1 | π#A1〉 & · · · & 〈π#Pi | Ai 〉 & · · · & 〈π#Pn | π#An〉
where π is the projection σ × α→ σ.



and:
〈P1 | A1〉 & · · · & 〈Pi | A ∧ B〉 & · · · & 〈Pn | An〉

∧
;

〈P1 | A1〉 & · · · & 〈Pi | A〉 & 〈Pi | B〉 & · · · & 〈Pn | An〉



or-right:

〈P1 | A1〉 & · · · & 〈Pi | A ∨ B〉 & · · · & 〈Pn | An〉
∨r
;

〈P1 | A1〉 & · · · & 〈Pi | B〉 & · · · & 〈Pn | An〉



or-left:
〈P1 | A1〉 & · · · & 〈Pi | A ∨ B〉 & · · · & 〈Pn | An〉

∨l
;

〈P1 | A1〉 & · · · & 〈Pi | A〉 & · · · & 〈Pn | An〉



A null resolution vector is one of the form
〈P1 | >〉 & · · · & 〈Pn | >〉



Definition
Let P be a program diagram and G a goal diagram over a category
C, that is to say, a categorical signature
(C[X1, . . . ,Xn], ι(C), 〈X1, . . . ,Xn〉). Then an SLD derivation is a
sequence of reductions starting with (singleton) state vector
〈P | G 〉.



Definition
An operational (SLD) proof is a (finite) sequence of reductions
〈P | G 〉; · · ·; NULL where NULL is a null resolution vector.



Definition
A computed answer substitution θ is the composition of all the
substitutions occurring in the backchain and instance steps of an
SLD-proof.



We are now in a position to define operational inference `o based
on the notion of resolution. We must be careful, however, to
distinguish between the universal role played by open formulas
(formulas of non-terminator sort, corresponding to those containing
free variables) in a sequent and the existential character they have
(as formulas with logic variables) in a resolution sequence

〈P | G 〉;θ; · · ·;NULL.



The intended meaning of such a derivation is that θ has
successfully instantiated an existential query and that any variables
remaining free after application of θ (i.e. if the source of θ is other
than 1) are universal. Thus, for example, the existence of the
derivation above should be equivalent to the assertion Pθ `o Gθ.



Definition
We will say that G is operationally derivable from P and write
P `o G iff there is a program P̃ and a formula G̃ such that
〈P̃ | G̃ 〉;θ; · · ·; NULL, with computed answer substitution θ,
P = P̃θ and G = G̃θ.



Lemma
If

〈P(t) | G (t)〉;θ; · · ·; NULL

then

〈P | G 〉;(θt); · · ·; NULL.



Lemma
If

〈P | G 〉;(θt); · · ·; NULL

then

〈P(t) | G (t)〉;θ; · · ·; NULL.



The preceding lemmas give us that

〈P(t) | G (t)〉;θ; · · ·;NULL iff 〈P | G 〉;(θt); · · ·;NULL



Semantics



Indexing over state information

Let Prog0 : C - CAT be the indexed category given by:

I Prog0(σ) = {P : P is a program of sort σ} with arrows
generated by the identity arrows, and, for each pair of
programs P,A, the right-augment arrows

P ∧ A �
πA

P,

and

I Prog0(σ
θ- ρ) = Prog0(ρ)

θ#
- Prog0(σ)



...more formally...

For each σ we can view Prog0(σ) as a preorder by ordering P ≤ Q
iff κ(id ,P) ⊆ κ(id ,Q) (the set of clauses of P is contained in the
set of clauses of Q). We will label the containments P ≤ P ∧ A
using the notation αA so we can talk about the behavior of natural
transformations with respect to these arrows.



Let GP be the category (the domain of the fibration) yielded by
the Grothendieck construction G(C,Prog0), namely the category
with objects pairs (P, σ) with P a program of sort σ and arrows

(P, σ)
(θ,αA)- (Q, ρ)

where σ
θ- ρ in C and θ#(Q) �

αA
P, whenever θ#(Q) = P ∧ A.



We now define categories of goals and models indexed over GP:

Gl,M : GP→ CAT

as follows:

I M(P, σ) = Sub(C( , σ))

I M[(Q, ρ)
(θ,αA)- (P, σ)] by pullback along θ

and

I Gl(P, σ) = {(G ,P, σ) : G is a goal over σ}
I Gl(P ∧ A, σ)

Gl(θ,αA)- Gl(θ#(P), ρ) via

(G ,P ∧ A, σ) 7→ (θ#(A⇒G ), θ#(P), ρ)

Recall 〈P|A⇒G 〉;〈P ∧ A|G 〉



Then an operational interpretation may be defined as a GP-indexed
functor

[[ ]] : Gl→M.

satisfying conditions 1,2,3,4,5 below.



1. triples (G ,P, σ) ∈ Tσ are mapped to monics with target HomC( , σ)

2. [[> ]]P is mapped to the identity arrow on HomC( , σ).

3. [[A ∧ B ]]P = [[A ]]P ∩ [[B ]]P

4. [[A ∨ B ]]P = [[A ]]P ∪ [[B ]]P

5. [[∃f A ]]P = ImJf K [[A ]]P(f )

where ImJf K is the image along f , also denoted ∃Jf K.



By naturality of [[ ]] we have, for every arrow σ
t- ρ in C

Gl(P, ρ)
[[ ]]
- M(P, ρ)

Gl(P(t), σ)

Gl(id , t)

?

[[ ]]
- M(P(t), σ)

M(id , t)

?

i.e.
JtK#( [[G ]]P) = [[G (t) ]]P(t)



The fact that the semantics must respect implication is also
guaranteed by naturality of [[ ]] over the base category GP. If we fix
the sort σ and vary programs, the commutativity of

Gl(P ∧ A, σ)
[[ ]]
- M(P ∧ A, σ)

Gl(P, σ)

Gl(αA)

?

[[ ]]
- M(P, σ)

M(αA)

?

implies [[A⇒G ]]P = [[G ]]P∧A.



Soundness and Completeness



There is a natural partial order on interpretations.

Definition
[[ ]] ⊆ [[ ]]′ iff for all goal formulae A and every P ∈ K of the same
sort, [[A ]]P ⊆ [[A ]]′P .

It suffices to check the order on atoms.



Lemma
If [[Xi (t) ]]P ⊆ [[Xi (t) ]]′P for all atoms Xi (t) and all P ∈ K of the

same sort, then [[ ]] ⊆ [[ ]]′

Proof.
By a straightforward induction on the structure of goals.



Definition
We shall say that an interpretation [[ ]] is a model of a program Q
of sort σ if for every clause (ϕ, tlcl⇒Xi (tmcl)) ∈ κ(Q), we have
[[tlcl ]]Q(ϕ) ⊆ [[Xi (tmcl) ]]Q(ϕ),



Proposition

If [[ ]] is a model of a program Q, and G is a goal such that Q `o G
then [[G ]]Q is an isomorphism.



Proof: By induction on length of the derivation.
Let [[ ]] be a model of Q, and let G be a goal such that Q `o G .
Consider the first resolution rule of the proof of Q `o G : whose
computed substitution (the composition of the substitutions along
the way) is the identity.

〈Q | G 〉 θ1π,(tlcl⇒ G̃)
; 〈(π#Q)θ1 | tlclθ1〉; · · ·;ϕ ; NULL



Backchain

By the induction hypothesis then, [[(tlclθ1)ϕ ]]Q is an isomorphism.

But, [[(tlclθ1)ϕ ]]Q ⊆ [[(G̃θ1)ϕ ]]Q = [[((π#G )θ1)ϕ ]]Q = [[G ]]Q
which must then also be an isomorphism.



Conjunction

〈Q | A ∧ B〉 ∧; 〈Q | A〉 & 〈Q | B〉; · · ·;id; NULL

By the induction hypothesis then we know that [[A ]]Q and [[B ]]Q
are isomorphisms, as then is [[A ∧ B ]]Q .



Disjunction

〈Q | A1 ∨ A2〉
∨
; 〈Q | Ai 〉; · · ·;id; NULL.

By the induction hypothesis then we know that [[Ai ]]Q is an
isomorphism, as then is [[A1 ∨ A2 ]]Q .



Augment

〈Q | A⇒B〉 A
; 〈Q ∧ A | B〉; · · ·;id; NULL.

By the induction hypothesis then, we know that
[[A⇒B ]]Q = [[B ]]Q∧{A} is an isomorphism.



Instance

Suppose the first step of the resolution sequence was an instance
rule:

〈Q | ∃x :αA〉
π
; 〈(π#)Q | A〉; · · ·;ψ; NULL.



Instance (cont.)

By the induction hypothesis then, we know that [[(ψ)#A ]]Q is an

isomorphism, i.e., [[>α×σ′ ]] ⊆ ( [[ψ ]])# [[A ]]Qπ for some type σ′.
Now using the fact that image is left-adjoint to pullback, we have
ImJψK [[>α×σ′ ]] ⊆ [[A ]]Qπ. This is equivalent to [[>σ ]] ⊆ [[∃x :αA ]]Q
as we wanted to show.


