Tactics and certificates in Meta-Dedukti

Raphaël Cauderlier

March 2, 2017

Outline

- Why tactics?
- 2 Related work
- 3 Dktactics
- 4 Resolution certificates
- Conclusion

Why Tactics?

- short
- several goals at once
- easy to develop interactively
- domain-specific automation
- axiom elimination
- transfer
- checking certificates

Tactics are short

```
Ltac mytactic := simpl; f_equal; assumption.
Lemma plus_commute m n : m + n = n + m.
Proof.
  induction m.
  - induction n.
    + reflexivity.
    + mytactic.
  - transitivity (S (n + m)).
    + mytactic.
    + clear IHm.
      induction n.
      * reflexivity.
      * mytactic.
Defined.
```

Tactics are short

```
fun m n : nat =>
nat ind (fun m0 : nat => m0 + n = n + m0)
  (nat ind (fun n0 : nat \Rightarrow 0 + n0 = n0 + 0) eq refl
     (fun (n0 : nat) (IHn : 0 + n0 = n0 + 0) =>
      (fun H : n0 = n0 + 0 =>
       (fun H0 : n0 = n0 + 0 =>
        eq_trans (f_equal (fun f : nat -> nat => f n0) e
          (f equal S HO)) H) IHn) n)
  (fun (m0 : nat) (IHm : m0 + n = n + m0) =>
   eq_trans
     ((fun H : m0 + n = n + m0 = >
       (fun H0 : m0 + n = n + m0 =>
        eq_trans (f_equal (fun f : nat -> nat => f (m0 +
          (f_equal S HO)) H) IHm)
     (nat_ind (fun n0 : nat => S (n0 + m0) = n0 + S m0)
        (fun (n0 : nat) (IHn : S (n0 + m0) = n0 + S m0)
         (fun H : S (n0 + m0) = n0 + S m0 =>
```

(fun H0 : S (n0 + m0) = n0 + S m0 =>

Tactics are easy to develop interactively

```
Ltac mytactic :=
   simpl;
   f_equal;
   assumption.

Lemma plus_commute m n :
    m + n = n + m.

Proof.
   induction m.
```

Tactics allow domain-specific automation

- encode separation logic
- write a tactic proving goals of the form $(A * x \mapsto a * B * y \mapsto b * C) \rightarrow x \neq y$

Tactics can serve axiom elimination

Eliminating axiom ax is the same as proving formulae of the form $(ax \rightarrow A) \rightarrow A$.

Tactics can be used for transferring theorems

Reasoning modulo isomorphism

Let *A* and *B* be two isomorphic structures. If φ_A is a theorem about *A* then φ_B holds.

We want a transfer tactic proving goals of the form $\varphi_A \to \varphi_B$.

Tactics can be used for transferring theorems

Reasoning modulo isomorphism

Let *A* and *B* be two isomorphic structures. If φ_A is a theorem about *A* then φ_B holds.

We want a transfer tactic proving goals of the form $\varphi_A \to \varphi_B$.

- On April 27th, Théo Zimmermann is going to talk about this in Coq
- On May 4th, I am going to talk about adapting his work in Meta Dedukti

Tactic are required for certificate checking

Dedukti proofs for Zenon Arith, VeriT, Zipperposition?

- Zenon Arith: reasoning modulo associativity and commutativity of addition (ring)
- VeriT: reasoning modulo symmetry of equality (congruence)
- Zipperposition: resolution(A, B, C)

$$\frac{A}{C}$$
 (resolution)

if there are C_1, C_2, l, l', σ such that

- $A =_{AC} C_1 \vee l$,
- $B =_{AC} C_2 \vee \neg l'$,
- $C =_{AC} \sigma(C_1 \vee C_2)$,
- $\sigma l = \sigma l'$.

Tactic languages

	Tactic language	Type System	Term embedding
LCF	Implementation language	ML	Deep
Ltac	Extra language	Untyped	Shallow
Mtac	Coq Refiner language	Dependent	Mostly Shallow
Lean	Lean	Dependent	Deep
Oyster2	Oyster2	Dependent	Shallow
ACL2	ACL2	Untyped	Deep

All of them:

- handle backtracking
- allow non termination
- do not compromise logical consistency

Non-termination without compromising consistency

Lean approach:

- any symbol flagged as meta is not passed to the kernel
- any symbol depending on a meta symbol should itself be meta
- termination check is deactivated in the meta world

Non-termination without compromising consistency

Mtac approach:

- tactics are kept in a monad
- tactic reduction is not used for conversion
- run (m : M A) has type A iff m tactic-reduces to a term ret a
 - in this case, run m is replaced by a
 - run is never seen by the kernel

Non-termination without compromising consistency

Meta Dedukti approach:

- define a good and several bad (not good) rewrite systems
- normalize using bad systems until type checking succeeds using the good system

good ⊂ {terminating, confluent, consistent, constructive}

Dktactics

Tactic and certificate languages for first-order logic in Meta Dedukti.

- Written (almost) only in Dedukti
- No modification of Dedukti itself
 - No implicit parameter, quoting, or unification
 - Intensive use of Miller pattern and non-linearity
- Easy to adapt to other logics

Encoding First-Order Logic in Dedukti

Encoding First-Order Logic in Dedukti

Encoding First-Order Logic in Dedukti

```
def proof : prop -> Type.
proof false --> c : prop -> proof c
[a,b] proof (and a b) -->
        c : prop ->
        (proof a -> proof b -> proof c) ->
        proof c
[a,b] proof (or a b) -->
        c : prop ->
        (proof a -> proof c) ->
        (proof b -> proof c) ->
        proof c
[a,b] proof (imp a b) --> proof a -> proof b
[A,p] proof (all A p) --> a : term A -> proof (p a)
[A,p] proof (ex A p) -->
        c : prop ->
        (a : term A -> proof (p a) -> proof c) ->
        proof c.
                                    ◆ロト ◆部 → ◆草 → 草 ・ 夕 Q ○
```

- dependently typed
- backtracking
- not linear, not confluent, not consistent

tactic A is the type of tactics proving A or failing to do so. tactic is a monad.

```
exception : Type.
tactic : prop -> Type.

ret : A : prop -> proof A -> tactic A.
raise : A : prop -> exception -> tactic A.

def run : A : prop -> tactic A -> proof A.
[A,a] run A (ret a) --> a.
```

```
def bind : A : prop -> B : prop ->
  tactic A -> (proof A -> tactic B) -> tactic B.
[a,f,t] bind _ _ (ret _ t) f --> f t
[B,t] bind _ B (raise _ t) _ --> raise B t.

def try : A : prop ->
  tactic A -> (exception -> tactic A) -> tactic A.
[A,t] try A (ret _ t) _ --> ret A t
[t,f] try _ (raise _ t) f --> f t.
```

```
def intro term : A : type ->
                   B : (term A -> prop) ->
                    (x : term A \rightarrow tactic (B x)) \rightarrow
                   tactic (all A B).
[A,B,b] intro term A B (x \Rightarrow ret (B x) (b x))
       --> ret (all A B) (x : term A \Rightarrow b x)
[A,B,e] intro term A B (x \Rightarrow raise (B x) e)
       --> raise (all A B) e.
def intro_proof : A : prop ->
                     B : prop ->
                     (proof A -> tactic B) ->
                     tactic (imp A B).
[A,B,b] intro_proof A B (x \Rightarrow ret B (b x))
      --> ret (imp A B) (x : proof A \Rightarrow b x)
[A,B,e] intro_proof A B (x => raise _ e)
       --> raise (imp A B) e.
                                         ◆□ > ◆□ > ◆■ > ◆ ■ → ● ● の Q ○
```

Comparison with Mtac

This is a fragment of Mtac:

- FOL instead of CIC
- no direct manipulation of variables and meta-variables
- no encoding of fixpoint nor pattern-matching

But our tactic language is not as easy to use as Mtac because Dedukti lacks implicit arguments.

- untyped
- concise
- Turing-complete

Certificates are meta-programs, they evaluate to tactics. Certificate evaluation happens in a given context.

```
context : Type.
nil_ctx : context.
cons_ctx_var :
    A : type -> term A -> context -> context.
cons_ctx_proof :
    A : prop -> proof A -> context -> context.

certificate : Type.

def run :
    A : prop -> context -> certificate -> tactic A.
```

```
exact_mismatch : prop -> prop -> exception.
exact : A : prop -> proof A -> certificate.
[A,a] run A _ (exact A a) --> tactics.ret A a
[A,B] run A _ (exact B _)
       --> tactics.raise A (exact_mismatch A B).
raise : exception -> certificate.
[A,e] run A (raise e) --> tactics.raise A e.
try : certificate -> (exception -> certificate) ->
      certificate.
[A,G,c1,c2] run A G (try c1 c2) \longrightarrow tactics.try ...
```

```
with_goal : (prop -> certificate) -> certificate.
[A,G,c] run A G (with goal c) --> run A G (c A).
with_context : (context -> certificate) -> certificate.
[A,G,c] run A G (with_context c) --> run A G (c G).
def with assumption :
(A : prop -> proof A -> certificate) -> certificate
:=
f \Rightarrow with context (G \Rightarrow try all assumptions f G).
def assumption : certificate := with assumption exact.
clear : prop -> certificate -> certificate.
[A,G,B,c] run A G (clear B c) --> run A (ctx_remove B G)
```

```
def match prop : prop ->
certificate ->
                                              (; false ;)
(prop -> prop -> certificate) ->
                                                (; and ;)
                                                 (; or ;)
(prop -> prop -> certificate) ->
(prop -> prop -> certificate) ->
                                                (; imp ;)
(A:type -> (term A -> prop) -> certificate) -> (; all ;)
(A:type -> (term A -> prop) -> certificate) -> (; ex ;)
(p:dk_fol.predicate ->
                                               (; pred ;)
hlist (pred_arity p) term ->
 certificate) ->
certificate.
```

```
refine : A : prop -> B : prop ->
         (proof A -> proof B) ->
         certificate -> certificate.
[G,A,B,f,c] run B G (refine A B f c) -->
  tactics.bind A B (run A G c) (a : proof A =>
  tactics.ret B (f a)).
refine2 : A : prop -> B : prop -> C : prop ->
          (proof A -> proof B -> proof C) ->
          certificate -> certificate -> certificate.
[G,A,B,C,f,c1,c2] run C G (refine2 A B C f c1 c2) -->
   tactics.bind A C (run A G c1) (a : proof A =>
   tactics.bind B C (run B G c2) (b : proof B =>
   tactics.ret C (f a b))).
```

```
def trivial : certificate.
def split : certificate -> certificate -> certificate.
def left : certificate -> certificate.
def right : certificate -> certificate.
def exists : A : type -> term A -> certificate -> certificate.

def modus_ponens : A : prop -> certificate ->
```

```
def exfalso : certificate -> certificate.
def destruct_and : A : prop -> B : prop ->
  proof (and A B) -> certificate -> certificate.
def destruct_or : A : prop -> B : prop ->
  proof (or A B) -> certificate -> certificate ->
  certificate.
def destruct_imp : A : prop -> B : prop ->
 proof (imp A B) -> certificate -> certificate ->
  certificate.
def destruct_all : A : type -> B : (term A -> prop) ->
 proof (all A B) -> term A -> certificate ->
  certificate.
def destruct ex :
 A : type -> B : (term A -> prop) -> proof (ex A B) ->
  certificate -> certificate.
```

Resolution

$$\frac{A}{C}$$
 (resolution)

if there are C_1, C_2, l, l', σ such that

- \bullet $A =_{AC} C_1 \vee l$,
- $B =_{AC} C_2 \vee \neg l'$,
- $C =_{AC} \sigma(C_1 \vee C_2)$,
- $\sigma(l) = \sigma(l')$.

Reasoning modulo AC

```
def modulo_ac_base : certificate :=
  certificates.repeat (t =>
    (certificates.try certificates.assumption
       ( => certificates.try (certificates.left t)
          ( => certificates.right t)))).
def modulo ac : certificate :=
  certificates.repeat (mac =>
   certificates.with_assumption (A => a =>
    certificates.match_or A
     (A1 \Rightarrow A2 \Rightarrow
      certificates.destruct_or A1 A2
        (certificates.ifeq_proof A (or A1 A2) a)
        (certificates.intro (certificates.clear A mac))
        (certificates.intro (certificates.clear A mac)))
     modulo_ac_base)).
```

Substitution

- Encoding of variables is shallow.
- A substitution is a list of pairs of terms.

$$\begin{array}{cccc}
\sigma(f(t_1,\ldots,t_n)) & \hookrightarrow & f(\sigma(t_1),\ldots,\sigma(t_n)) \\
\{\}(t) & \hookrightarrow & t \\
\{x\mapsto a,\sigma\}(x) & \hookrightarrow & a \\
\{x\mapsto a,\sigma\}(t) & \hookrightarrow & \sigma(t)
\end{array}$$

$$\begin{array}{cccc}
\sigma(\bot) & \hookrightarrow & \bot \\
\sigma(A\Box B) & \hookrightarrow & \sigma(A)\Box\sigma(B) \\
\sigma(\mathcal{Q}x.A) & \hookrightarrow & \mathcal{Q}x.\sigma(A) \\
\sigma(P(t_1,\ldots,t_n)) & \hookrightarrow & P(\sigma(t_1),\ldots,\sigma(t_n)) \\
\{\}(A) & \hookrightarrow & A \\
\{x\mapsto x,\sigma\}(A) & \hookrightarrow & \sigma(A)
\end{array}$$

Unification

O(x,x)

 $UO(x, t, \mathbf{false}, \sigma)$

- An equation is a pair of terms.
- A unification problem is a list of equations.
- A unification result is either the constant **FAIL** or a substitution

$$O(x, f(t_1, \dots, t_n)) \qquad \hookrightarrow O(x, t_1) \text{ or } \dots \text{or } O(x, t_n)$$

$$U([]) \qquad \hookrightarrow \qquad \{\}$$

$$U(f(t_1, \dots, t_n) = f(t'_1, \dots, t'_n) :: p) \qquad \hookrightarrow \qquad U(t_1 = t'_1 :: \dots :: t_n = t'_n :: p)$$

$$U(f_- = g_- ::_-) \qquad \hookrightarrow \qquad \mathbf{FAIL}$$

$$U(t = t :: p) \qquad \hookrightarrow \qquad U(p)$$

$$U(f(t_1, \dots, t_n) = x :: p) \qquad \hookrightarrow \qquad U(x = f(t_1, \dots, t_n) :: p)$$

$$U(x = t :: p) \qquad \hookrightarrow \qquad UO(x, t, O(x, y), U(\{x \mapsto a\}(p)))$$

$$U(O(_-, -, \mathbf{true}, _-) \qquad \hookrightarrow \qquad \mathbf{FAIL}$$

$$U(O(_-, -, -, \mathbf{FAIL}) \qquad \hookrightarrow \qquad \mathbf{FAIL}$$

true

 $\hookrightarrow \{x \mapsto \sigma(a), \sigma\}$

Simple resolution and specialization

$$\frac{\frac{A}{C_1 \vee l} \text{ AC}}{\frac{\sigma(C_1) \vee \sigma(l)}{\sigma(C_2) \vee \sigma(l')}} \underbrace{\frac{B}{C_2 \vee \neg l'} \text{ AC}}_{\text{Specialize}(\sigma)} \underbrace{\frac{\sigma(C_1) \vee \sigma(C_2)}{\sigma(C_2) \vee \neg \sigma(l')}}_{\text{Res}} \text{Res}$$

Simple resolution and specialization

```
def simple_resolution (C1 : prop) (C2 : prop)
                       (1 : prop)
                        (H1 : proof (or C1 l))
                        (H2 : proof (or C2 (not 1)))
                        : proof (or C1 C2)
:= ...
def specialize (A : type)
                (B : term A -> prop)
                (f : term A -> term A)
                (H : proof (all A B))
                : proof (all A (x \Rightarrow B (f x)))
```

Conclusion

- Rewriting is good for meta-programming
- Meta-programming is good for writing tactics
- Tactics are good for checking certificates

Contribution

- a typed tactic language and an untyped certificate language for Meta Dedukti
- expressive enough for certificate checking
- mostly independent of the object logic
 - but resolution relies on unification

Feature requests

- quoting
- meta-normalization
- local rewriting
- rewriting traces
- implicit arguments

Future work

applications to develop:

- certificate checking
- axiom elimination
- transfer

Next talk

- MathTransfer: a Dedukti library of transfer results generated from FoCaLiZe
- The transfer tactic in Meta Dedukti
- Zenon Modulo vs. transfer on MathTransfer