Tactics and certificates in Meta-Dedukti

Raphaél Cauderlier

March 2, 2017

1/46

Outline

@ Why tactics?

© Related work

@ Dxktactics

@ Resolution certificates

© Conclusion

2/46

Why tactics?

Why Tactics?

short

several goals at once

easy to develop interactively
domain-specific automation
axiom elimination

transfer

checking certificates

3/46

Tactics are short

Ltac mytactic := simpl; f_equal; assumption.

Lemma plus_commute m n : m + n = n + m.
Proof.
induction m.
- induction n.
+ reflexivity.
+ mytactic.
- transitivity (S (n + m)).
+ mytactic.
+ clear IHm.
induction n.
* reflexivity.
* mytactic.
Defined.

4746

Why tactics?

Tactics are short

fun m n : nat =>
nat_ind (fun mO : nat => mO + n n + mO0)
(nat_ind (fun nO0 : nat => 0 + n0 = n0 + 0) eq_refl
(fun (n0 : nat) (IHn : O + n0O = n0 + 0) =>
(fun H : n0 = n0 + 0 =>
(fun HO : n0O = n0 + 0 =>
eq_trans (f_equal (fun f : nat -> nat => f n0) e
(f_equal S HO)) H) IHn) n)
(fun (mO : nat) (IHm : mO + n = n + m0) =>
eq_trans
((fun H : mO + n = n + m0 =>
(fun HO : mO + n = n + m0 =>
eq_trans (f_equal (fun f : nat -> nat => f (m0 +
(f_equal S HO)) H) IHm)

(nat_ind (fun n0 : nat => S (n0 + m0) = n0 + S mO0)
(fun (nO0 : nat) (IHn : S (n0O + mO) = n0O + S m0)

(fun H : S (n0 + m0) = n0 + S m0 =>
(fun HO : S (n0 + m0) = n0 + S m0 => 5/46

Why tactics?

Tactics are easy to develop interactively

Ltac mytactic :=
simpl;
f_equal;
assumption.

Lemma plus_commute m n
m+n=mn+ m.
Proof.
induction m.

2 subgoals, subgoal 1

subgoal 2 (ID 14) is:
Sm+n=mn+Sm

6/46

Why tactics?

Tactics allow domain-specific automation

@ encode separation logic

@ write a tactic proving goals of the form
(Axx—axBxy—bxC)—>x+#y

7146

Why tactics?

Tactics can serve axiom elimination

Eliminating axiom ax is the same as proving formulae of the form
(ax — A) — A.

8/46

Why tactics?

Tactics can be used for transferring theorems

Reasoning modulo isomorphism

Let A and B be two isomorphic structures. If (4 is a theorem about A
then p holds.

We want a transfer tactic proving goals of the form 4 — p.

9/46

Tactics can be used for transferring theorems

Reasoning modulo isomorphism

Let A and B be two isomorphic structures. If (4 is a theorem about A
then p holds.

We want a transfer tactic proving goals of the form 4 — p.

@ On April 27th, Théo Zimmermann is going to talk about this in
Coq

@ On May 4th, I am going to talk about adapting his work in Meta
Dedukti

9/46

Why tactics?

Tactic are required for certificate checking

Dedukti proofs for Zenon Arith, VeriT, Zipperposition?
@ Zenon Arith: reasoning modulo associativity and commutativity of
addition (ring)
@ VeriT: reasoning modulo symmetry of equality (congruence)

@ Zipperposition: resolution(A, B, C)

A
(resolution)

if there are Cy, Cs, 1,1, o such that
e A=4cC1 V IA
@ B=4cCyVv-l,
o C=y¢ O'(Cl \Y CQ),
e ol=ol.

10/46

Related work

Tactic languages

Tactic language Type System Term embedding

LCF Implementation language ML Deep

Ltac Extra language Untyped Shallow

Mtac Coq Refiner language Dependent Mostly Shallow
Lean Lean Dependent Deep

Oyster2 Oyster2 Dependent Shallow

ACL2 ACL2 Untyped Deep

All of them:

@ handle backtracking
@ allow non termination

@ do not compromise logical consistency

11/46

Related work

Non-termination without compromising consistency

Lean approach:
@ any symbol flagged as meta is not passed to the kernel
@ any symbol depending on a meta symbol should itself be meta

@ termination check is deactivated in the meta world

12/46

Related work

Non-termination without compromising consistency

Mtac approach:
@ tactics are kept in a monad
@ tactic reduction is not used for conversion

@ run (m : M A) has type A iff m tactic-reduces to a term ret a

e in this case, run m is replaced by a
e run is never seen by the kernel

13/46

Related work

Non-termination without compromising consistency

Meta Dedukti approach:
@ define a good and several bad (not good) rewrite systems

@ normalize using bad systems until type checking succeeds using
the good system

good C {terminating, confluent, consistent, constructive }

14/46

Dktactics

Dktactics

Tactic and certificate languages for first-order logic in Meta Dedukti.

@ Written (almost) only in Dedukti
@ No modification of Dedukti itself

o No implicit parameter, quoting, or unification
o Intensive use of Miller pattern and non-linearity

@ Easy to adapt to other logics

15/46

Dktactics

Encoding First-Order Logic in Dedukti

type : Type.
term : type -> Type.
function : Type.
def fun_arity : function -> list type.
def fun_codomain : function -> type.
apply_fun : f : function ->
hlist (fun_arity f) term ->
term (fun_codomain f).

16/46

Dktactics

Encoding First-Order Logic in Dedukti

prop : Type.
false : prop.
and : prop -> prop -> prop.

ex : A : type -> (term A -> prop) -> prop.

predicate : Type.
def pred_arity : predicate -> list type.
apply_pred : p : predicate ->
hlist (pred_arity p) term ->
prop.

17/46

Dktactics

Encoding First-Order Logic in Dedukti

def proof : prop -> Type.
[] proof false --> c : prop -> proof c
[2,b] proof (and a b) -->
c : prop ->
(proof a -> proof b -> proof c) ->
proof c
[a,b] proof (or a b) -->
c : prop ->
(proof a -> proof c) ->
(proof b -> proof c) ->
proof c
[a,b] proof (imp a b) --> proof a -> proof b
[A,p] proof (all A p) --> a : term A -> proof (p a)
[A,p] proof (ex A p) -->
¢ : prop ->
(a : term A -> proof (p a) -> proof c) ->
proof c.

18/46

Dktactics

The tactic language

@ dependently typed
@ backtracking

@ not linear, not confluent, not consistent

19/46

Dktactics

The tactic language

tactic A is the type of tactics proving A or failing to do so.
tactic is a monad.

20/46

Dktactics

The tactic language

exception : Type.
tactic : prop -> Type.

ret : A : prop -> proof A -> tactic A.
raise : A : prop -> exception -> tactic A.

def run : A : prop -> tactic A -> proof A.
[A,a] run A (ret _ a) --> a.

21/46

Dktactics

The tactic language

def bind : A : prop -> B : prop ->

tactic A -> (proof A -> tactic B) -> tactic B.
[a,f,t] bind _ _ (ret _ t) f --> f t
[B,t] bind _ B (raise _ t) _ --> raise B t.

def try : A : prop ->

tactic A -> (exception -> tactic A) -> tactic A.
[A,t] try A (ret _ t) _ --> ret A t
[t,f] try _ (raise _ t) f --> f t.

22/46

Dktactics

The tactic language

def intro_term : A : type ->
B : (term A -> prop) ->
(x : term A -> tactic (B x)) ->
tactic (all A B).
[A,B,b] intro_term A B (x => ret (B x) (b x))
--> ret (all A B) (x : term A => b x)
[A,B,e] intro_term A B (x => raise (B x) e)
--> raise (all A B) e.

def intro_proof : A : prop ->
B : prop ->
(proof A -> tactic B) ->
tactic (imp A B).
[A,B,b] intro_proof A B (x => ret B (b x))
--> ret (imp A B) (x : proof A => b x)
[A,B,e] intro_proof A B (x => raise _ e)
--> raise (imp A B) e.

23/46

Dktactics

Comparison with Mtac

This is a fragment of Mtac:
@ FOL instead of CIC
@ no direct manipulation of variables and meta-variables
@ no encoding of fixpoint nor pattern-matching

But our tactic language is not as easy to use as Mtac because Dedukti
lacks implicit arguments.

24746

Dktactics

The certificate layer

@ untyped
@ concise

@ Turing-complete

Certificates are meta-programs, they evaluate to tactics.
Certificate evaluation happens in a given context.

25/46

Dktactics

The certificate layer

context : Type.
nil_ctx : context.
cons_ctx_var
A : type -> term A -> context -> context.
cons_ctx_proof
A : prop -> proof A -> context -> context.

certificate : Type.

def run
A : prop -> context -> certificate -> tactic A.

26/46

Dktactics

The certificate layer

exact_

exact
[A,al]
[A,B]

raise
[A,e]

try

mismatch : prop -> prop -> exception.
A : prop -> proof A -> certificate.
run A _ (exact A a) --> tactics.ret A a
run A _ (exact B _)
--> tactics.raise A (exact_mismatch A B).

exception -> certificate.
run A _ (raise e) --> tactics.raise A e.

certificate -> (exception -> certificate) ->
certificate.

[A,G,cl,c2] run A G (try cl c2) --> tactics.try

27/46

Dktactics

The certificate layer

with_goal : (prop -> certificate) -> certificate.
[A,G,c] run A G (with_goal c) --> run A G (c A).

with_context : (context -> certificate) -> certificate.
[A,G,c] run A G (with_context c¢) --> run A G (c G).

def with_assumption
(A : prop -> proof A -> certificate) -> certificate
f => with_context (G => try_all_assumptions f G).

def assumption : certificate := with_assumption exact.

clear : prop -> certificate -> certificate.
[A,G,B,c] run A G (clear B ¢) --> run A (ctx_remove B G)

28/46

The certificate layer

def match_prop

certificate ->

(prop -> prop ->
(prop -> prop ->
(prop -> prop ->
(A:type -> (term
(A:type -> (term

(p:dk_fol.predicate -> G

Dktactics

prop ->

(; false
certificate) -> (; and
certificate) -> (; or
certificate) -> (; imp

A -> prop) -> certificate) -> (;
A -> prop) -> certificate) -> (; ex

hlist (pred_arity p) term ->

certificate) ->
certificate.

29/46

The certificate layer

[c]

[A,B,c]
[A,B,c]
[A,B,c]
[A,B,c]
[A,B,c]
[p,1,c]

match_prop
match_prop
match_prop
match_prop
match_prop
match_prop
match_prop

Dktactics

false

(and A B)
(or A B)
(imp A B)
(all A B)
(ex A B)

(apply_pred p 1)

oo o0 o0 o0 oo
He -

H WWwWwww

30/46

Dktactics

The certificate layer

refine : A : prop -> B : prop ->
(proof A -> proof B) ->
certificate -> certificate.
[G,A,B,f,c] run B G (refine A B f ¢c) -->
tactics.bind A B (run A G c) (a : proof A =>
tactics.ret B (f a)).

refine2 : A : prop -> B : prop -> C : prop ->
(proof A -> proof B -> proof C) ->
certificate -> certificate -> certificate.
[G,A,B,C,f,cl,c2] run C G (refine2 A B C f cl1 c2) --—>
tactics.bind A C (run A G c1) (a : proof A =>
tactics.bind B C (run B G c2) (b : proof B =>
tactics.ret C (f a b))).

31/46

Dktactics

The certificate layer

intro : certificate -> certificate.

[A,B,G,c] run (dk_fol.imp A B) G (intro c)
--> tactics.intro_proof A B

[A,B,G,c] run (dk_fol.all A B) G (intro c)
--> tactics.intro_term A B

repeat : (certificate -> certificate) -> certificate.
[A,G,f] run A G (repeat f) --> run A G (f (repeat £f)).

32/46

Dktactics

The certificate layer

def ifeq_term : A : type -> B : type ->
term A -> term B.
[A,a] ifeq_term A A a --> a.

def ifeq_proof : A : prop -> B : prop ->

proof A -> proof B.
[A,a]l ifeq_proof A A a --> a.

33/46

Dktactics

The certificate layer

def trivial : certificate.

def split : certificate -> certificate -> certificate.
def left : certificate -> certificate.

def right : certificate -> certificate.

def exists : A : type -> term A -> certificate ->
certificate.

def modus_ponens : A : prop —->
certificate -> certificate -> certificate.

def apply : A : type -> (term A -> prop) -> term A ->
certificate -> certificate.

34/46

Dktactics

The certificate layer

def exfalso : certificate -> certificate.

def destruct_and : A : prop -> B : prop ->
proof (and A B) -> certificate -> certificate.

def destruct_or : A : prop -> B : prop —->
proof (or A B) -> certificate -> certificate ->
certificate.

def destruct_imp : A : prop -> B : prop ->
proof (imp A B) -> certificate -> certificate ->
certificate.

def destruct_all : A : type -> B : (term A -> prop) ->
proof (all A B) -> term A -> certificate ->
certificate.

def destruct_ex
A : type -> B : (term A -> prop) -> proof (ex A B) ->
certificate -> certificate.

35746

Resolution cer

Resolution

A

(resolution)

if there are C1, Co, 1, ', o such that
0 A=4cC VI,
@ B=4cCyV -/,
@ C=4co(C1VCy),
o a(l)y=0o(l).

36/46

Resolution certificates

Reasoning modulo AC

def modulo_ac_base : certificate :=
certificates.repeat (t =>
(certificates.try certificates.assumption

(__ => certificates.try (certificates.left t)
(__ => certificates.right t)))).
def modulo_ac : certificate :=

certificates.repeat (mac =>
certificates.with_assumption (A => a =>
certificates.match_or A
(A1 => A2 =>
certificates.destruct_or Al A2
(certificates.ifeq_proof A (or Al A2) a)
(certificates.intro (certificates.clear A mac))
(certificates.intro (certificates.clear A mac)))
modulo_ac_base)).

37746

Resolution certificates

Substitution

@ Encoding of variables is shallow.
@ A substitution is a list of pairs of terms.

o(flti,....ta)) = flo(tn),...,0(t))
{3 = 1

{x—a,0}(x) <= a

{x—=a,o}(1) — o)

o(l) — 1

o(AOB) — o(A)Oo(B)
o(Qx.A) — QOx.o(A)
o(P(ti,...,ty)) < Plo(ty),...,o(t))
{4) o oA

{x—=x,0}(A) < o(A)

38/46

Resolution certificates

Unification

@ An equation is a pair of terms.
@ A unification problem is a list of equations.
@ A unification result is either the constant FAIL or a substitution

O(x, x) — true

O(x, f(t1,... 1)) — O(x,t;) or ...or O(x, 1,)
u(l]) = {}

Uf(tr,....ta) = f(t),....0,) =p) — Uth=108=...::ty=10,:p)
Ulf_=g_=_) < FAIL

Ult=t:p) — U(p)

Ulf(t,...,ty) =x::p) — Ux=f(t1,...,ty) = p)
Ulx=t:p) — UO(x,1,0(x,y), U{x — a}(p))
Uo(_,_,true,_) — FAIL

UO(_,_, _, FAIL) <5 FAIL

UO(x, t, false, o) — {x—o(a),0}

39/46

Resolution certificates

Simple resolution and specialization

A B
vl AC .. Cy Vv =l AC ..
——————— Specialize(o) ~— Specialize(o)
o(Cr) Vo(l) o(Cy) V —o(l') R
es

O'(Cl) V O‘(CQ)
C

AC

40/46

Resolution certificates

Simple resolution and specialization

def simple_resolution (Cl : prop) (C2 : prop)
(1 : prop)
(H1 : proof (or C1l 1))
(H2 : proof (or C2 (mot 1)))
proof (or C1 C2)

def specialize (A : type)
(B : term A -> prop)
(f : term A -> term A)
(H : proof (all A B))
proof (all A (x => B (f x)))

41/46

Conclusion

Conclusion

@ Rewriting is good for meta-programming
@ Meta-programming is good for writing tactics

@ Tactics are good for checking certificates

42/46

Conclusion

Contribution

@ a typed tactic language and an untyped certificate language for
Meta Dedukti

@ expressive enough for certificate checking
o mostly independent of the object logic

e but resolution relies on unification

43/46

Conclusion

Feature requests

quoting
meta-normalization
local rewriting
rewriting traces

implicit arguments

44746

Conclusion

Future work

applications to develop:
o certificate checking
@ axiom elimination

@ transfer

45/46

Conclusion

Next talk

@ MathTransfer: a Dedukti library of transfer results generated from
FoCalLiZe

@ The transfer tactic in Meta Dedukti

@ Zenon Modulo vs. transfer on MathTransfer

46/46

	Why tactics?
	Related work
	Dktactics
	Resolution certificates
	Conclusion

