Tuesday 10 April 2018, 9:00, Room F580, Halle aux Farines, Université Denis Diderot, Paris: Extending higher-order logic with predicate subtyping (PhD defense), Frédéric Gilbert (Deducteam)
Rapporteurs:
Examinateurs:
Directeurs de thèse:
The type system of higher-order logic allows to exclude some unexpected expressions such as the application of a predicate to itself. However, it is not sufficient to verify more complex criteria such as the absence of divisions by zero. This thesis is dedicated to the study of an extension of higher-order logic, named predicate subtyping, whose purpose is to make the assignment of types as expressive as the assignment of predicates. Starting from a type A and a predicate P(x) of domain A, predicate subtyping allows to build a subtype of A, denoted {x : A | P(x)}, whose elements are the terms t of type A such that P(t) is provable. Predicate subtyping is at the heart of the proof system PVS.
This work presents the formalization of a minimal system expressing predicate subtyping, named PVS-Core, as well as a system of verifiable certificates for PVS-Core. This second system, named PVS-Cert, is based on the introduction of proof terms and explicit coercions. PVS-Core and PVS-Cert are equipped with a notion of conversion corresponding respectively to equality modulo beta and to equality modulo beta and the erasure of coercions, chosen to establish a simple correspondence between the two systems.
The construction of PVS-Cert is similar to that of PTSs (Pure Type Systems) with dependent pairs and PVS-Cert can be equipped with the notion of beta-sigma-reduction used at the core of these systems. One of the main theorems proved in this work is the strong normalization of both the reduction underlying the conversion and beta-sigma-reduction. This theorem allows, on the one hand, to build a type-checking (and proof-checking) algorithm for PVS-Cert and, on the other hand, to prove a cut elimination result, used in turn to prove important properties of the two studied systems. Furthermore, it is also proved that PVS-Cert is a conservative extension of the PTS lambda-HOL and that, as a consequence, PVS-Core is a conservative extension of higher-order logic.