Thursday 8 November 2018, 14:00, LSV library: The intuitionistic calculus that was discovered 6 times Stéphane Graham-Lengrand (Parsifal).
In this talk I will review G4ip, a simple calculus for intuitionistic propositional logic (IPL) that provides a decision procedure for provability. Its basic mechanisms can be traced back to Vorob'ev in the 50s, and were found again by Hudelmaier (88), Dyckhoff (90), Paulson (91), and (with a linear logic flavour) Lincoln-Scedrov-Shankar (91). In 2015, Claessen and Rosén presented the fastest decision procedure for IPL, based on SMT-solving techniques. We describe their algorithm and show how it can be seen as a variant of the aforementioned calculus, albeit with key variations that provide increased performance. Their algorithm relies on a SAT-solver used as a black box and treats intuitionistic entailment as a theory. We show how the recent framework of model-constructing satisfiability for SMT-solving could further integrate intuitionistic reasoning within the main SAT-solving loop. This would constitute an intuitionistic variant of the main algorithm of SAT-solvers, where Kripke models are built instead of Boolean models.