Translating proofs from automated theorem provers to Logipedia

First Logipedia meeting

Guillaume Burel 1,2

Wednesday January 23rd, 2019

¹Samovar, ENSIIE, Université Paris Saclay

²Inria and LSV, CNRS and ENS Paris Saclay, Université Paris Saclay

Guillaume Burel: Translating proofs from automated theorem provers to Logipedia First Logipedia meeting, 2019-01

Why could Logipedia be interested in Automated Theorem Provers?

- Import proofs from databases of problems
 - TPTP yes, at least problems produced by humans
 - Proof obligations from program verification probably not
- Helping proof assistants
 - automated Logipedia tactic
- Transfer
 - cannot automated everything
 - but can definitively help (see [Cauderlier 17])

Guillaume Burel:

First Logipedia meeting, 2019-01

2/19

Families of automated theorem provers

- SAT solvers
 - propositional logic
- SMT solvers
 - combining a SAT solver with decision procedure for particular theories
- ► FO theorem provers
 - many based on resolution/superposition
- ► HO provers
 - TH1 of TPTP \simeq classical STT \forall

Most of them are for classical logic

Guillaume Burel:

Translating proofs from automated theorem provers to Logipedia

Output of ATPs

- ► proof term
 - the ATP produces directly a Dedukti file
 - Zenon modulo, iProverModulo, ArchSat
- proof script
 - tree (DAG) of formulas;
 - each formula is a logical consequence of its parents
 - TSTP format (partially), DRUP format
- ► proof trace
 - evolving set of formulas
 - satisfiability is preserved
 - TSTP format (Skolemization, splitting), DRAT format

Guillaume Burel:

First Logipedia meeting, 2019-01

4/19

Resolution proofs

$$\mathsf{Res.} \ \frac{P \lor C \quad \neg Q \lor D}{\sigma(C \lor D)} \ \sigma = mgu(P,Q) \qquad \qquad \mathsf{Fact.} \ \frac{P \lor Q \lor D}{\sigma(P \lor D)} \ \sigma = mgu(P,Q)$$

Proof trace from e.g. Prover9:

▶ which rule? ▶ which premises? ▶ which literals? ▶ which derived clause?

[Cauderlier 18] Dedukti tactic using metadedukti

- a program written in Dedukti
- produce Dedukti proof terms for each inference step

```
def C3 := resolution.resolve 0 2 C1 C2.
```

```
thm c3 : resolution.qcproof C3
```

:= resolution.resolve_correct 0 2 C1 C2 c1 c2.

Guillaume Burel:

First Logipedia meeting, 2019-01

5/19

Proof format of the CADE community

List of formulas

▶ each annotated by an inference tree whose leafs are other formulas

```
cnf(c_0_60,plain,
  ( join(X1,join(X2,X3)) = join(X2,join(X1,X3)) ),
  inference(rw,[status(thm)],
    [inference(spm,[status(thm)],[c_0_30,c_0_18]),
        c_0_30])).
```

Guillaume Burel:

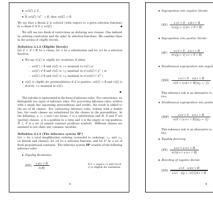
First Logipedia meeting, 2019-01

6/19

Proof format of the CADE community

List of formulas

▶ each annotated by an inference tree whose leafs are other formulas


Independent of the proof calculus

Guillaume Burel:

Translating proofs from automated theorem provers to Logipedia

Proof calculus of F

	 Rewriting of positive hiterals²: 	Deletion of duplicate literals:
if $\sigma = \sup_{w \in W} u(v, s), \sigma(s) \not\leq \sigma(t), \sigma(u) \not\leq \sigma(v), \sigma(s \simeq t)$ is eligible for parametrial tion, $\sigma(u \Rightarrow v)$ is eligible for	$(\mathbb{RP}) \xrightarrow{x \supset t u \supset v \lor R}_{x \supset t u \mid p \leftarrow \sigma(t) \mid \square v \lor V R} \text{if } u _p = \sigma(s), \sigma(s) > \\ \text{and } t \mid u \supset v \mid s \text{ not engly}\\ p \notin h.$	(DD) and (DD)
resolution, and $u _F \notin V$.	Classe subsamption:	$(DR) = \frac{x \gamma i x \lor R}{R}$
if $\sigma = mgu(u _{\mu}, s), \sigma(s) \neq \sigma(t), \sigma(u) \neq \sigma(v), \sigma(s \simeq t)$ is elicible for non-modula-	(C8) $C = \sigma(C \vee R)$ where C and R are arb (partial) chance and σ multiplication.	
tion, $\sigma(u = v)$ is eligible for resolution, and $u _{p} \notin V$.	 Equality subsumption: and a single of all controls of all V R. 	$(DE) = \frac{x \not \equiv y \lor R}{\sigma(R)}$ if $x, y \in V, \sigma = mgw(x, y)$
re literale	(ES) $\frac{s \approx t u(p \leftarrow \sigma(s)) \approx u(p \leftarrow \sigma(t)) \lor R}{s \approx t}$	 Contextual literal cutting:
if $\sigma = mgu(u _{\sigma}, s)$, $\sigma(s) \notin$ $\sigma(t)$, $\sigma(u) \notin \sigma(v)$, $\sigma(s \simeq t)$ is eligible for parametrial	 Positive simplify reflect^a: 	(CLC) $\frac{\sigma(C \lor R \lor x \pm s)}{\sigma(C \lor R)} = \frac{C \lor x \pm s}{C \lor x \pm s}$ where $\overline{x \pm s}$ is the negation of $x \pm s$ and σ is a substitution
tion, $\sigma(wpix)$ is eligible for resolution, and $u(y \notin V)$.	(P8) $s \simeq t - u[p \leftarrow \sigma(s)] p[u[p \leftarrow \sigma(\ell)] \lor R$ $s \simeq t - R$	This rule is also known as subsumption resolution or clausal simplification.
(SN) that performs better in prac-	Negative simplify reflect	Condensing:
e hiterak	(N8) $xy(t - \sigma(x)y(\sigma(t) \vee R)) = \frac{xy(t - \sigma(x)y(\sigma(t) \vee R))}{xy(t - R)}$	$(CON) \xrightarrow{I_1 \cup I_2 \vee R} \sigma(l_1 \vee R) \xrightarrow{i_1 \sigma(l_1) \vee R} i_1 \sigma(l_1 \vee R)$
if $\sigma = mgu(u _{\theta}, s), \sigma(s) \notin \sigma(t), \sigma(u) \notin \sigma(v), \sigma(s \simeq t)$	s fit R • Tautology deletion:	 Introduce definition⁵
is eligible for paramedula- tion, $\sigma(u \neq v)$ is eligible for resolution, and $u _{p} \notin V$.	(TD) <u>C</u> If C is a testsion?	(ID) $\frac{R \lor S}{d \lor R \rightarrow d \lor S}$ with the provides definition $\frac{R \lor S}{d \lor R \rightarrow d \lor S}$ and R does not contain any
(SP) that performs better in prac-	*A stronger version of (BP) is proven to maintain completeness for Unit and Hor	symbol from D
	inner and is generally helieved to maintain completeness for the general case as well. Reserver, the proof of completeness for the general case news to be rather incolved, a	hurst, • Apply definition
if $\sigma = mgu(s, u)$, $\sigma(t) \neq \sigma(s)$ and $\sigma(s > t)$ eligible for paramodulation.	options a very different times ordering them the one introduced [1030, as due are not or any versing product in the Neutralevit and some eventing of maximal breach under crediting of maximal breach under crediting intermatives: $\begin{aligned} & K \psi_{P} = e(\gamma_{1}, \tau_{P}) \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} \\ & \frac{\kappa_{P} \tau}{\kappa_{P}} & \frac{\kappa_{P} \tau}{\kappa_$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
if $u _{\theta}=\sigma(s)$ and $\sigma(s)>\sigma(t).$	remanning. This strenger rule is implemented macconfully by both E and SPASS [Wei99], An architecture this rule in order and/or all of (1) and (1) are to incrementative i.e. all	gins is only nomi-decidable in equational ingit. Current remains of R try to detect tautologies by deciding if the ground-sampleted negative literatic imply at beat one of the positive literatic, as momental in SNMT.
	cases this rule is subnamed by (RN) and the deletion of coulord literals (DR).	final link cleans of all negative propositions.
	10	

Guillaume Burel

Translating proofs from automated theorem provers to Logipedia

First Logipedia meeting, 2019-01

7/19

Proof reconstruction

Use information from the proof trace to guide proof building

Inspired by Sledgehammer and PRocH

Two approaches:

- premises selector
- trace steps reconstruction

Guillaume Burel: Translating proofs from automated theorem provers to Logipedia First Logipedia meeting, 2019-01

Premises selector

Problems can contain many axioms

(especially if they come from ITP in a huge development)

Proofs found by ATP only use a few of them

Use the trace to know which axioms are actually needed Reconstruct the proof from scratch using only these axioms

▶ In a Dedukti-producing ATP

Guillaume Burel: Translating proofs from automated theorem provers to Logipedia First Logipedia meeting, 2019-01

Premises selection, experimental results

[Pham 2016]: Fork of Zenon modulo, reads a TSTP file and keep only needed axioms

On 12467 FO problems of the TPTP library:					
	Zenon modulo	E prover	Premises selection		
	(alone)		+ Zenon modulo		
#Problems solved	2274	8901	3249		
%	18.2	71.3	26.0		

Guillaume Burel:

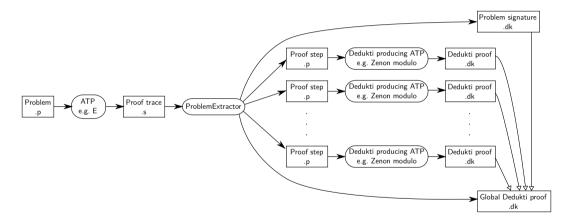
First Logipedia meeting, 2019-01

10/19

ensiie samovar (nita (S)

Proof step reconstruction

Axiom selection not enough, need to rebuild each proof steps


Part of Yacine El Haddad PhD thesis (ongoing work)

- agnostic wrt the proof calculus
- agnostic wrt the proof-producing reconstructor

Guillaume Burel: Translating proofs from automated theorem provers to Logipedia First Logipedia meeting, 2019-01 11/19

Architecture

Guillaume Burel: Translating proofs from automated theorem provers to Logipedia First Logipedia meeting, 2019-01

Remark

The structure of the original trace is kept in the global Dedukti proof:

```
cnf(c_0_{60,plain},
    ( join(X1, join(X2, X3)) = join(X2, join(X1, X3)) ),
    inference(rw,[status(thm)],
      [inference(spm, [status(thm)], [c_0_30, c_0_18]),
       c 0 30])).
let c 0 18 : ... = ...
let c 0 30 : ... = ...
. . .
let c_0_60 : P (eq(join(X1,join(X2,X3)), join(X2,join(X1,X3)))) =
    c_0_40.goal c_0_30 c_0_18 c_0_30 in x...
```

Guillaume Burel:

First Logipedia meeting, 2019-01

13/19

ensije samovar (nita (S)

Proofs Modulo Theory SMT solver VeriT Proof traces:

- logical steps
- ► theory "axioms"
 - formulas valid in the theory
 - generated by the theory reasoner (learned lemma)

Verine: translation to Dedukti [Gilbert 15]

- Logical steps can be easily translated
- Needs theory specific Dedukti-proof producing solver
 - ArchSat? Coq(Omega) + translation?

Guillaume Burel:

First Logipedia meeting, 2019-01

14/19

SAT solving

De facto standard for SAT solvers: DRAT

List of clauses

- each new clause preserves satisfiability of preceding ones
 - using a criterion called Reverse Asymmetric Tautology
- ▶ Deletion : indicates which clauses are no longer needed

New clauses may not be logical consequences of preceding ones!

think of Skolemization in FOL

Guillaume Burel: Translating proofs from automated theorem provers to Logipedia

Proof transformation

Satisfiability preservation:

 Γ has a model $\Rightarrow \Gamma, C$ has a model

Provability preservation:

 $\Gamma, C \vdash \bot$ has a proof $\Rightarrow \Gamma \vdash \bot$ has a proof

- 1. Start from $\overline{\Gamma, \bot \vdash \bot}$
- 2. Transform proof until $Axioms \vdash \bot$

RAT criterion leads to a algorithm to transform proofs

using auxiliary clauses

Guillaume Burel:

Translating proofs from automated theorem provers to Logipedia

Limits of proof transformation

Start from the end of the trace

Cannot benefit from deletion information

Can be adapted to follow the trace in the right order,

but produces too many unneeded auxiliary clauses

First Logipedia meeting, 2019-01 17/19

Extended Resolution

Fortunately, [Kiesl et al. 2018]:

Extended resolution simulates DRAT

Extended resolution [Tseitin 1968]:

- ▶ resolution + definitions of new propositional variables
- ▶ Easily expressible in Dedukti

The translation from DRAT to what we need of Extended resolution can be performed in quadratic time (better in practice)

Guillaume Burel: Translating proofs from automated theorem provers to Logipedia First Logipedia meeting, 2019-01

Questions

- 1. Constructivization
- 2. Which automatically found proofs do we want in Logipedia?
- 3. Is it possible to present them so that export out of Logipedia look nice?
- 4. How much can ATPs help in concept alignment?
 - see also nitpick

Guillaume Burel: Translating proofs from automated theorem provers to Logipedia

