Alignments and Their Applications

Thibault Gauthier Cezary Kaliszyk Karol Pąk

Logipedia Meeting January 22, 2019

Proof Interoperability

Proof Analysis

Comparing, Presentation, Search...

Proof Auditing

- HOL/Import, HOL Zero, ...

Re-use and Combining

Particularly useful if shallow

Alignments Applications

Organizing data (logical framework).

- Eliminate duplicates.
- Regroup theorems.

Importing an external library (import HOL Light).

- Shallow embedding.
- Flexible mappings.

Proving.

Premise selection: Learning relation between similar concepts.

Conjecturing.

- Discovery of dual theorems.

Proof Assistant	Theorems	Constants
Mizar 🕂 💮	51086	9172
Coq 🦆	23320	4841
HOL4 ≅	16476	2247
HOL Light	16191	820
Isabelle/HOL	14814	1076
Matita 💭	1712	629

How to find alignments

- Find properties: associativity, commutativity, nilpotence, distributivity, injectivity,
- Rank pair of constants according to a score based on the number of their common properties.
- Improve scores based on already found alignments

Constant 0Library 1 + \times \emptyset Library 2 \cup \cap

$$\forall x, y. \ x + y = y + x$$

Constant 0 Library 1 + \times \emptyset Library 2 \cup

Commutativity: $\forall x, y. \ x \square y = y \square x$

	Constant	Properties	
	0		
Library 1	+	C[+]	
	×	$C[\times]$	
	Ø		
Library 2	\cup	$C[\cup]$	
	\cap	$C[\cap]$	

$$\forall x, y. \ x + 0 = x$$

	Constant	Properties
	0	
Library 1	+	C[+]
	×	$C[\times]$
	Ø	
Library 2	\cup	$C[\cup]$
	\cap	$C[\cap]$

Neutral: $\forall x. \ x \square_1 \square_2 = x$

	Constant	Properties
	0	N[+,0]
Library 1	+	C[+] N[+,0]
	×	$C[\times]$
	Ø	$N[\cup,\emptyset]$
Library 2	\cup	$C[\cup]\ N[\cup,\emptyset]$
	\cap	$C[\cap]$

$$\forall x, y. \ x \times 0 = 0$$

	Constant	Properties
	0	N[+,0]
Library 1	+	C[+] N[+,0]
	×	$C[\times]$
Library 2	Ø	$N[\cup,\emptyset]$
	\cup	$C[\cup]\ N[\cup,\emptyset]$
	\cap	$C[\cap]$

Absorbent: $\forall x. \ x \square_1 \square_2 = \square_2$

	Constant	Properties
	0	$N[+,0] \ A[\times,0]$
Library 1	+	$C[+] \ N[+,0]$
	×	$C[\times]\;A[\times,0]$
Library 2	Ø	$N[\cup,\emptyset] \ A[\cap,\emptyset]$
	\cup	$C[\cup]\; N[\cup,\emptyset]$
	\cap	$C[\cap]\ A[\cap,\emptyset]$

$$\forall x, y, z. \ x \times (y+z) = x \times y + x \times z$$

	Constant	Properties
	0	$N[+,0] A[\times,0]$
Library 1	+	C[+] N[+,0]
	×	$C[\times]\;A[\times,0]$
Library 2	Ø	$N[\cup,\emptyset] \ A[\cap,\emptyset]$
	\cup	$C[\cup]\ N[\cup,\emptyset]$
	\cap	$C[\cap]\ A[\cap,\emptyset]$

Distrib: $\forall x, y, z. \ x \square_1 \ (y \square_2 \ z) = (x \square_1 \ y) \square_2 \ (x \square_1 \ z)$

	Constant	Properties
Library 1	0	$N[+,0] A[\times,0]$
	+	$C[+]\;N[+,0]\;D[\times,+]$
	×	$C[\times] \ A[\times,0] \ D[\times,+]$
Library 2	Ø	$N[\cup,\emptyset] \ A[\cap,\emptyset]$
	\cup	$C[\cup]\; N[\cup,\emptyset]\; D[\cup,\cap]\; D[\cap,\cup]$
	\cap	$C[\cap] \ A[\cap,\emptyset] \ D[\cup,\cap] \ D[\cap,\cup]$

Applications

HOLyHammer

Conjecturing
 Lipschitzian → Continuous

Alignments for Combining Proof Libraries

Theorem

If there is a 2-inaccessible cardinal, then higher-order Tarski-Groethendieck is satisfiable.

Allows us to combine Isabelle/HOL and Isabelle/Mizar libraries

Isomorphism for natural numbers

```
\begin{array}{l} \textbf{fun } h2\mathfrak{sn} :: nat \Rightarrow Set \ (\mathfrak{h}2\mathfrak{s}_{\mathbb{N}}(\text{-})) \ \textbf{where} \\ \mathfrak{h}2\mathfrak{s}_{\mathbb{N}}(\text{0}::nat) =_{\mathcal{S}} \theta_{\mathcal{S}} \mid \mathfrak{h}2\mathfrak{s}_{\mathbb{N}}(Suc(x)) =_{\mathcal{S}} succ \ \mathfrak{h}2\mathfrak{s}_{\mathbb{N}}(x) \\ \\ \textbf{function } s2hn :: Set \Rightarrow nat \ (\mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(\text{-})) \ \textbf{where} \\ \neg x \ be \ Nat \Longrightarrow \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(x) =_{\mathcal{H}} undefined \\ \mid \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(\theta_{\mathcal{S}}) =_{\mathcal{H}} \theta \\ \mid x \ be \ Nat \Longrightarrow \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(succ(x)) =_{\mathcal{H}} Suc(\mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(x)) \end{array}
```

Preservation of Constants allows theorem translation

```
theorem Nat to Nat:
     fixes x::nat and v::nat
     assumes n be Nat and m be Nat
    shows \mathfrak{h}2\mathfrak{s}_{\mathbb{N}}(x+_{\mathcal{H}}y) =_{\mathcal{S}} \mathfrak{h}2\mathfrak{s}_{\mathbb{N}}(x) +_{\mathcal{S}}^{\mathbb{N}} \mathfrak{h}2\mathfrak{s}_{\mathbb{N}}(y)
                  \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(n+\mathfrak{s}^{\mathbb{N}} m) =_{\mathcal{H}} \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(n) +_{\mathcal{H}} \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(m)
                           h2\mathfrak{s}_{\mathbb{N}}(x *_{\mathcal{H}} y) =_{\mathcal{S}} h2\mathfrak{s}_{\mathbb{N}}(x) *_{\mathcal{S}}^{\mathbb{N}} h2\mathfrak{s}_{\mathbb{N}}(y)
                     \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(n *_{\mathcal{S}}^{\mathbb{N}} m) =_{\mathcal{H}} \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(n) *_{\mathcal{H}} \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(m)
                                                x < v \longleftrightarrow h2\mathfrak{s}_{\mathbb{N}}(x) \subset h2\mathfrak{s}_{\mathbb{N}}(v)
                                               n \subset m \longleftrightarrow \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(n) < \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(m)
                                            x \ dvd \ y \longleftrightarrow \mathfrak{h} 2\mathfrak{s}_{\mathbb{N}}(x) \ divides \ \mathfrak{h} 2\mathfrak{s}_{\mathbb{N}}(y)
                                 n \text{ divides } m \longleftrightarrow \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(n) \text{ dvd } \mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(m)
                                         prime(x) \longleftrightarrow \mathfrak{h} 2\mathfrak{s}_{\mathbb{N}}(x) is prime_{\mathcal{S}}
                                n \text{ is } prime_{\mathcal{S}} \longleftrightarrow prime(\mathfrak{s}2\mathfrak{h}_{\mathbb{N}}(n))
```

theorem Bertrand:

$$\forall$$
 n:Nat. $1_{\mathcal{S}} \subset n \longrightarrow (\exists p:Nat. \ p \ be \ prime_{\mathcal{S}} \land n \subset p \land p \subset (2_{\mathcal{S}} *_{\mathcal{S}}^{\mathbb{N}} \ n))$

Beyond natural numbers

Lists

```
theorem s2hL-Prop:

assumes p be FinSequence and q be FinSequence

and n be Nat and n in len p

shows size(\mathfrak{s}2\mathfrak{h}_L(\mathfrak{s}2\mathfrak{h},p)) =_{\mathcal{H}} \mathfrak{s}2\mathfrak{h}_N(len\ p)

\mathfrak{s}2\mathfrak{h}_L(\mathfrak{s}2\mathfrak{h},p^{\hat{}}q) =_{\mathcal{H}} \mathfrak{s}2\mathfrak{h}_L(\mathfrak{s}2\mathfrak{h},p) @ \mathfrak{s}2\mathfrak{h}_L(\mathfrak{s}2\mathfrak{h},q)

\mathfrak{s}2\mathfrak{h}_L(\mathfrak{s}2\mathfrak{h},p) ! \mathfrak{s}2\mathfrak{h}_N(n) =_{\mathcal{H}} \mathfrak{s}2\mathfrak{h}(p.\ (succ\ n))
```

Functions

```
theorem HtoSappl: assumes belsoS(\mathfrak{h}2\mathfrak{s}d,\mathfrak{s}2\mathfrak{h}d,d) and belsoS(\mathfrak{h}2\mathfrak{s}r,\mathfrak{s}2\mathfrak{h}r,r) shows \mathfrak{h}2\mathfrak{s}_f(\mathfrak{s}2\mathfrak{h}d,\mathfrak{h}2\mathfrak{s}r,d,f).\mathfrak{h}2\mathfrak{s}d(x) =_{\mathcal{S}} \mathfrak{h}2\mathfrak{s}r(f(x))
```

Algebra

Groups

Assuming an isomorphism on the carrier and operation, groups are isomorphic

Rings

```
mdef int_3-def_3 (\mathbb{Z}-ring) where
   func \mathbb{Z}-ring \rightarrow strict(doubleLoopStr) equals [#
     carrier \mapsto INT:
        addF \mapsto addint:
      ZeroF \mapsto 0_S:
       multF \mapsto multint;
       OneF \mapsto 1_S \#
theorem H_Zring_to_S_Zring:
     h2s_R(s2h_{\mathbb{Z}}, h2s_{\mathbb{Z}}, INT, \mathbb{Z}) =_S \mathbb{Z}-ring
  \mathfrak{s}2\mathfrak{h}_{R}(\mathfrak{s}2\mathfrak{h}_{Z},\mathfrak{h}2\mathfrak{s}_{Z},\mathbb{Z}-ring)=_{\mathcal{H}}\mathcal{Z}
```

Questions: What do we want from Dedukti?

- Proof Analysis / Presentation / Search
- Proof Translation and Auditing
- Proof Advice (supervised and unsupervised learning)
- Re-use and Combining
- ...

What techniques for this do we have / want?

- Alignments
- Proof Engineering
- Reverse Mathematics
- ...