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Logical Frameworks

A logical system (Euclidean geometry, set theory, Simple type
theory, the Calculus of constructions...) should not be defined as
independent system

They should be expressed in a Logical framework

Logical Frameworks: Predicate logic (1928), λ-Prolog, Isabelle,
Pure type systems, the λΠ-calculus (LF), Deduction modulo
theory, the λΠ-calculus modulo theory (Dedukti)

Each theory breaks down into a number of axioms / rewrite rules

Permits to analyze which proof uses which axiom / rewrite rule
(reverse mathematics)



Logipedia

An encyclopedia of proofs expressed

I in various theories

I in Dedukti
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I. Defining a theory in Dedukti



No universal method

Depends on the theory
But several “paradigmatic” examples in Dedukti: a Logical
Framework based on the lambda-Pi-Calculus Modulo Theory.

I Any (finite) theory expressed in Predicate logic

I Axiom schemes

I Simple type theory (without and with polymorphism)

I Pure type systems (CoC...)

I Inductive types

I Universes



Ongoing work

I Inductive types

I Universes (with universe polymorphism)

I Proof irrelevance

I Predicate subtyping



An example: Simple type theory

type : Type
Te : type → Type
o : type

nat : type
arrow : type → type → type

Pf : (Te o) → Type
⇒ : (Te o) → (Te o) → (Te o)
∀ : Πa : type (((Te a) → (Te o)) → (Te o))

(Te (arrow x y)) −→ (Te x) → (Te y)
(Pf (⇒ x y)) −→ (Pf x) → (Pf y)

(Pf (∀ x y)) −→ Πz : (Te x) (Pf (y z))



Examples

Types: nat→ nat expressed as (arrow nat nat) of type type
Then to (Te (arrow nat nat)) of type Type that reduces to
(Te nat) → (Te nat)

Terms: λx : nat x expressed as λx : (Te nat) x of type
(Te nat) → (Te nat)

Propositions: ∀X : o (X ⇒ X ) expressed as
∀ o λX : (Te o) (⇒ X X ) of type (Te o)
Then to (Pf (∀ o λX : (Te o) (⇒ X X ))) of type Type that
reduces to ΠX : (Te o) ((Pf X ) → (Pf X )).

Proofs: well-known expressed as λX : (Te o) λα : (Pf X ) α of
type ΠX : (Te o) ((Pf X ) → (Pf X ))



II. Exporting proofs from Dedukti



Three types of systems

I Those with explicit proof terms (Automath-like: Coq, Matita,
Lean, Agda...)
Just translate the proof term

I Those with predictable tactics (LCF-like: HOL Light,
Isabelle/HOL...)
Generate tactics (at the level of Natural deduction rules)

I Those with neither (PVS-like: PVS)
A tree such that a proposition labeling a node is not too
difficult to prove from those labeling its children and cut
Example : a = b, b = a ...
State ` a = b
Cut on b = a
Prove automatically b = a ` a = b
Continue with ` b = a
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Easy to do

One day, one week... depending on the system



III. Importing proofs to Dedukti



More difficult

Usually requires to instrument the source system

But done with Matita, HOL Light, FoCaLiZe, iProver,
Zenon, ArchSAT

I Zenon and ArchSAT have been designed with a Dedukti
output

I HOL Light has a output to some proof certificates
OpenTheory, that we could translate to Dedukti



Same three types of systems

I Those with explicit proof terms (Automath-like)
Just translate the proof term

I Those with a small set of primitive tactics (LCF-like) used to
build the others
Instrument the primitive tactics only

I Those with neither (PVS-like), in particular iProver
Ford technique (again)
Output a list of intermediate steps, use an automated
theorem prover (that output Dedukti proofs) to fill the
gaps, rebuild the puzzle from the pieces



IV. Reverse mathematics in Dedukti



(A slight extension of) the Calculus of constructions as a
theory in in Dedukti

type : Type
Te : type → Type
o : type

nat : type
arrow : Πx : type (((Te x)→ type)→ type)

Pf : (Te o)→ Type
⇒ : Πx : (Te o) (((Pf x)→ (Te o))→ (Te o))
∀ : Πx : type (((Te x)→ (Te o))→ (Te o))
π : Πx : (Te o) (((Pf x)→ type)→ type)

(Te (arrow x y)) −→ Πz : (Te x) (Te (y z))
(Pf (⇒ x y)) −→ Πz : (Pf x) (Pf (y z))

(Pf (∀ x y)) −→ Πz : (Te x) (Pf (y z))
(Te (π x y)) −→ Πz : (Pf x) (Te (y z))
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Comparing the theories

arrow in Simple type theory

Πx : type (type → type)

in the Calculus of constructions

Πx : type (((Te x) → type) → type)

In the Calculus of constructions, dependent arrow: in A→ B
(written Πx : A B), B can contain a variable x of type A

Same for ⇒
(∀ is dependent is both theories)

An extra constant π in the Calculus of constructions: typing
functions mapping proofs to terms



Analyzing proofs expressed in the Calculus of constructions

A subset S of the proofs expressed in the Calculus of constructions

I do not use the dependency of arrow

I do not use the dependency of the symbol ⇒,

I do not use the symbol π

Many proofs expressed in the Calculus of constructions in S



Translating proofs to Simple type theory

A proof in the Calculus of constructions

In S
Translation to Simple type theory:
replace (arrow A λx : (Te A) B) with (arrow A B)
(similar for ⇒)

Not in S
Genuinely uses a feature of the Calculus of constructions that does
not exist in Simple type theory
Cannot be expressed in Simple type theory
Same as in ZFC: genuinely uses the axiom of choice: not in ZF



Weaker and weaker

Currently: the “first” proof of Fermat’s little theorem in
constructive Simple type theory (no full polymorphism, no
dependent types, no universes...)

Further: predicative constructive Simple type theory

Further?: PA, fragments of PA...



V. Towards concept alignment



Connectives and quantifiers

Inductive types / Q0

Should be ignored by the library

Making formal the saying: Cauchy sequences or Dedekind cuts
immaterial (isomorphic and only structural statements)

But may be: one classical disjunction and one constructive one
(Ecumenical systems)



Further

The induction principle

Justified in different ways in different systems (axiom, consequence
of the definition of natural numbers...)

Does not matter as long as it is there



Not the first attempt to build a standard or a library

Why will / might it work this time?

I A better understanding of the theories behind the provers (40
years of research in logic)

I Success stories in point to point translations (Coq / HOL
Light)

I A logical framework to express these theories (more abstract
view)

I Try to accommodate as many people as possible but not all
(theories expressed in Dedukti, e.g. predicate subtyping:
research effort)

I Analyzing the proofs (reverse mathematics) before we share
them (partial translations)



First discussion before we go deeper

Which proof libraries should we target?

Which similar effort should we build upon?

What should we expect from an encyclopedia?


