
Theorem and proof transfer for a universal
collaborative repository of formal proofs

Théo Zimmermann

𝜋𝑟2 project-team, Inria
&

IRIF, Paris Diderot University

Logipedia meeting
Tuesday, 22 January 2019

1 / 11



Concepts have multiple definitions
(and multiple names)

• Equivalent characterizations
• Different foundations
• Varied levels of efficiency
• Invented by different people

Why try to select a canonical one?

2 / 11



Theorems have multiple statements
(and zero, one, or several names)

• Order of hypotheses
• Equivalent formulation of hypotheses
• Associativity, commutativity, symmetry…
• Specializations, generalizations

Why try to eliminate duplicates?

3 / 11



Duplication is unavoidable
(and sometimes good),

so we need instead:

• Good search
• Good automation
• Concept alignment

4 / 11



Finding concept alignments

• Automation should automatically find potential alignements.
• Try to prove transfer properties.
• Ask humans to prove other transfer properties (or rate the

likelihood of the conjecture).

5 / 11



Using concept alignments

• To transfer theorems: the proof still depends on the transfered
theorem, and its dependencies.

• To transfer proofs: more difficult but can avoid complex
dependencies.

Sometimes a theorem can be transfered but not its proof. For
instance, if the statement contains two related operators but the
proof needs to unfold them and they do not unfold in the same
way.

(ℕ, |) is isomorphic to multisets of prime numbers equipped with
multiset inclusion.

𝑛|𝑚 ≜ ∃𝑝, 𝑝 ⋅ 𝑛 = 𝑚 while 𝑛 ⊑ 𝑚 ≜ ∀𝑥 ∈ 𝑛, 𝑥 ∈ 𝑚

6 / 11



Using concept alignments

• To transfer theorems: the proof still depends on the transfered
theorem, and its dependencies.

• To transfer proofs: more difficult but can avoid complex
dependencies.

Sometimes a theorem can be transfered but not its proof. For
instance, if the statement contains two related operators but the
proof needs to unfold them and they do not unfold in the same
way.

(ℕ, |) is isomorphic to multisets of prime numbers equipped with
multiset inclusion.

𝑛|𝑚 ≜ ∃𝑝, 𝑝 ⋅ 𝑛 = 𝑚 while 𝑛 ⊑ 𝑚 ≜ ∀𝑥 ∈ 𝑛, 𝑥 ∈ 𝑚

6 / 11



How to transfer
[1999] C. Dubois, M. Jaume, Reuse of formal developments: some

experiments within Coq
[2000] N. Magaud, Y. Bertot, Changing Data Structures in Type Theory:

A Study of Natural Numbers
[2001] G. Barthe, O. Pons, Type Isomorphisms and Proof Reuse in

Dependent Type Theory
[2004] E.B. Johnsen, C. Lüth, Theorem Reuse by Proof Term

Transformation
[2012] B. Huffman, O. Kunčar, Lifting and Transfer: A Modular Design for

Quotients in Isabelle/HOL
[2013] P. Lammich, Automatic Data Refinement
[2013] C. Cohen, M. Dénes, A. Mörtberg, Refinements for free!
[2015] T. Zimmermann, H. Herbelin, Automatic and Transparent Transfer

of Theorems along Isomorphisms in the Coq Proof Assistant
[2017] R. Cauderlier, C. Dubois, Focalize and dedukti to the rescue for

proof interoperability
[2017] N. Tabareau, É. Tanter, S. Matthieu, Equivalences for Free!
[2018] M.M. Moscato, C.G.L. Pombo, C.A. Munoz, M.A. Feliú, Boosting

the Reuse of Formal Specifications

Sorry to those I forgot…

7 / 11



Transfer 101

How to relate the first line to the second?

∀ x : A, A.eq (A.add x A.zero) x

∀ x : B, B.eq (B.add x B.zero) x

First transformation:

A.all (λ x. A.eq (A.add x A.zero) x)
→
B.all (λ x. B.eq (B.add x B.zero) x)

8 / 11



Transfer 101

How to relate the first line to the second?

∀ x : A, A.eq (A.add x A.zero) x

∀ x : B, B.eq (B.add x B.zero) x

First transformation:

A.all (λ x. A.eq (A.add x A.zero) x)
→
B.all (λ x. B.eq (B.add x B.zero) x)

8 / 11



Transfer 101

(from Huffman and Kunčar)

Γ ⊢ (𝐴 ⤇ 𝐵) 𝑓 𝑔 Γ ⊢ 𝐴 𝑥 𝑦
Γ ⊢ 𝐵 (𝑓 𝑥) (𝑔 𝑦) App

Γ, 𝐴 𝑥 𝑦 ⊢ 𝐵 (𝑓 𝑥) (𝑔 𝑦)
(Γ ⊢ 𝐴 ⤇ 𝐵) (𝜆𝑥.𝑓 𝑥) (𝜆𝑦.𝑔 𝑦)Abs

𝐴 𝑥 𝑦 ∈ Γ
Γ ⊢ 𝐴 𝑥 𝑦 Var

9 / 11



Transfer 101

Thanks to:

((~ => →) => →) A.all B.all

we get down to:

x, x', x ~ x' |- A.eq (A.add x A.zero) x
→ B.eq (B.add x' B.zero) x'

Thanks to:

(~ => ~ => →) A.eq B.eq

we get down to:

x, x', x ~ x' |- A.add x A.zero ~ B.add x' B.zero
x, x', x ~ x' |- x ~ x'

10 / 11



Transfer 101

Thanks to:

((~ => →) => →) A.all B.all

we get down to:

x, x', x ~ x' |- A.eq (A.add x A.zero) x
→ B.eq (B.add x' B.zero) x'

Thanks to:

(~ => ~ => →) A.eq B.eq

we get down to:

x, x', x ~ x' |- A.add x A.zero ~ B.add x' B.zero
x, x', x ~ x' |- x ~ x'

10 / 11



Transfer 101

Thanks to:

(~ => ~ => ~) A.add B.add

we get down to:

x, x', x ~ x' |- x ~ x'
x, x', x ~ x' |- A.zero ~ B.zero

11 / 11


