
Elpi, the extension language for your ITP

Enrico Tassi
Deducteam seminars - 2020

Feb 20, 2020Enrico Tassi

This talk is about Elpi,
that is...

● An extension language
– its interpreter comes as a library
– with an API/FFI to write glue code

● A very high level, domain specific, language
– Data with binders
– Data with unification variables

● LGPL, by C.Sacerdoti Coen and myself

Elpi = λProlog + CHRProlog + CHR

Feb 20, 2020Enrico Tassi

Outline

● Elpi 101
– λProlog 101: type checker for λProlog 101: type checker for λProlog 101: type checker for λ→

– λProlog 101: type checker for λProlog + CHR 101: even & odd

● POC: Deducti + Elpi
● Example of a Coq-Elpi based tool

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101

% HOAS of terms

type app term → term → term.

type lam (term → term) → term.

% HOAS of types

type arrow ty → ty → ty.

% Example: identity function
lam (x\ x)
% Example: fst
lam x\ lam y\ x

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101
pred of i:term, o:ty.

of (app H A) T :-
 of H (arrow S T), of A S.

of (lam F) (arrow S T) :-
 pi x\ of x S => of (F x) T.

% Convention
X % universally quantified around the rule
X

i
 % not quantified (existentially quantified, globally)

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
of (lam F) (arrow S T) :-
 pi x\ of x S => of (F x) T.

of (lam x\ lam y\ app x y) Q
0
.

 Q
0
 = ...

ProgramGoal

Assignments

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
of (lam F) (arrow S T) :-
 pi x\ of x S => of (F x) T.
of c

1
 S

1
.

of ((x\ lam y\ app x y) c
1
) T

1.

Q
0
 = arrow S

1
 T

1

F
1
 = (x\ lam y\ app x y)

ProgramGoal

Assignments

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
of (lam F) (arrow S T) :-
 pi x\ of x S => of (F x) T.
of c

1
 S

1
.

of (lam y\ app c
1
 y) T

1.

Q
0
 = arrow S

1
 T

1

F
1
 = (x\ lam y\ app x y)

ProgramGoal

Assignments

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
of (lam F) (arrow S T) :-
 pi x\ of x S => of (F x) T.
of c

1
 S

1
.

of c
2
 S

2
.

of ((y\ app c
1
 y) c

2
) T

2.

Q
0
 = arrow S

1
 (arrow S

2
 T

2
)

F
1
 = (x\ lam y\ app x y)

F
2
 = (y\ app c

1
 y)

ProgramGoal

Assignments

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
of (lam F) (arrow S T) :-
 pi x\ of x S => of (F x) T.
of c

1
 S

1
.

of c
2
 S

2
.

of (app c
1
 c

2
) T

2.

Q
0
 = arrow S

1
 (arrow S

2
 T

2
)

F
1
 = (x\ lam y\ app x y)

F
2
 = (y\ app c

1
 y)

ProgramGoal

Assignments

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
of (lam F) (arrow S T) :-
 pi x\ of x S => of (F x) T.
of c

1
 S

1
.

of c
2
 S

2
.

of c
1
 (arrow S

3
 T

2
).

of c
2
 S

3
.

Q
0
 = arrow S

1
 (arrow S

2
 T

2
)

F
1
 = (x\ lam y\ app x y)

F
2
 = (y\ app c

1
 y)

H
3
 = c

1

A
3
 = c

2

ProgramGoal

Assignments

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
of (lam F) (arrow S T) :-
 pi x\ of x S => of (F x) T.
of c

1
 (arrow S

3
T

2
).

of c
2
 S

2
.

of c
2
 S

3
.

Q
0
 = arrow (arrow S

3
T

2
) (arrow S

2
 T

2
)

F
1
 = (x\ lam y\ app x y)

F
2
 = (y\ app c

1
 y)

H
3
 = c

1
S

1
 =

(arrow S

3
T

2
)

A
3
 = c

2

ProgramGoal

Assignments

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
of (lam F) (arrow S T) :-
 pi x\ of x S => of (F x) T.
of c

1
 (arrow S

2
T

2
).

of c
2
 S

2
.

Q
0
 = arrow (arrow S

2
T

2
) (arrow S

2
 T

2
)

F
1
 = (x\ lam y\ app x y)

F
2
 = (y\ app c

1
 y)

H
3
 = c

1
S

1
 =

(arrow S

3
T

2
)

A
3
 = c

2
 S

3
 = S

2

ProgramGoal

Assignments

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

g

Goals

rule “c” \ “d” | t <=> “g”.

CHR

“c”
X

“d”
Y

Constraints

g :- g , ...
g :- new_constraint c [X]
… X = t …

Clauses

1

2

3

1

2

3 4

4

4 4

d
Y

meta level

PL level

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101
type zero nat. type succ nat -> nat.

pred odd i:nat. pred even i:nat. pred double i:nat, o:nat.

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.

even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].

double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.

double X Y :- var X, new_constraint (double X Y) [X].

constraint even odd double {
 rule (even X) (odd X) <=> fail.
 rule (double _ X) <=> (even X).
}

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

even X
X = succ Y
not (double Z Y)

ProgramGoals

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Rules

Constraint store

even X, X = succ Y, not (double Z Y)

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

X = succ Y
not (double Z Y)

ProgramGoals

Rules

even f
X

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

even (succ Y)
not (double Z Y)

ProgramGoals

Rules

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

odd Y
not (double Z Y)

ProgramGoals

Rules

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

not (double Z Y)

ProgramGoals

Rules

odd f
Y

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

not ()

ProgramGoals

Rules

odd f
Y

double f
Z
 f

Y

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

not (even Y)

ProgramGoals

Rules

odd f
Y

double f
Z
 f

Y

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

not ()

ProgramGoals

Rules

odd f
Y

double f
Z
 f

Y

even f
Y

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

not (fail)

ProgramGoals

Rules

Constraint store

odd f
Y

double f
Z
 f

Y

even f
Y

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

ProgramGoals

Rules

odd f
Y

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Feb 20, 2020Enrico Tassi

Elpi = λProlog 101: type checker for λProlog + CHR

● λProlog 101: type checker for λProlog for …
 backward reasoning, search
✔ programming with binders recursively

● CHR for …
 forward reasoning
✔ manipulate (frozen) unification variables
✔ handle metadata on unification variables

Feb 20, 2020Enrico Tassi

What about Deducti
https://github.com/Deducteam/lambdapi/pull/418

● Demo
● Code overview

https://github.com/Deducteam/lambdapi/pull/418

Feb 20, 2020Enrico Tassi

What about Coq-Elpi
https://github.com/LPCIC/coq-elpi/

● Coq’s syntax
– predicate {{ nat → lp:X }} :- use X, print {{ bool → lp:X }}.

● Coq’s API
– $ grep pred coq-builtin.elpi | wc -l

– 102

– $ grep pred coq-lib.elpi | wc -l

– 37

● Coq’s vernacular commands:
– Elpi Command foo

– Elpi Tactic bar

● Hierarchy Builder (example)

https://github.com/LPCIC/coq-elpi/
https://github.com/math-comp/hierarchy-builder

Feb 20, 2020Enrico Tassi

Thanks!

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

