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This talk is about Elpi,
that is...

● An extension language
– its interpreter comes as a library
– with an API/FFI to write glue code

● A very high level, domain specific, language
– Data with binders
– Data with unification variables

● LGPL, by C.Sacerdoti Coen and myself

Elpi = λProlog + CHRProlog + CHR
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Outline

● Elpi 101
– λProlog 101: type checker for λProlog 101: type checker for λProlog 101: type checker for λ→ 

– λProlog 101: type checker for λProlog + CHR 101: even & odd

● POC: Deducti + Elpi
● Example of a Coq-Elpi based tool
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λProlog 101: type checker for λProlog 101

% HOAS of terms

type app term → term → term.

type lam (term → term) → term.

% HOAS of types

type arrow ty → ty → ty.

% Example: identity function
lam (x\ x)
% Example: fst
lam x\ lam y\ x
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λProlog 101: type checker for λProlog 101
pred of i:term, o:ty.

of (app H A) T :-
  of H (arrow S T), of A S.

of (lam F) (arrow S T) :-
  pi x\ of x S => of (F x) T.

% Convention
X % universally quantified around the rule
X

i
 % not quantified (existentially quantified, globally)
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λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
of (lam F) (arrow S T) :-
  pi x\ of x S => of (F x) T.

of (lam x\ lam y\ app x y) Q
0
.

 Q
0
 = ...

ProgramGoal

Assignments
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λProlog 101: type checker for λProlog 101

of (app H A) T :- of H (arrow S T), of A S.
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  pi x\ of x S => of (F x) T.
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1
) T

1.

Q
0
 = arrow S
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ProgramGoal
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λProlog 101: type checker for λProlog + CHR 101

g

Goals

rule “c” \ “d” | t <=> “g”.

CHR

“c”
X  

“d”
Y

Constraints

g :- g , ...
g :- new_constraint c [X]
… X = t …

Clauses

1

2

3

1

2

3 4

4

4 4

d
Y

meta level

PL level
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λProlog 101: type checker for λProlog + CHR 101
type zero nat.  type succ nat -> nat.

pred odd i:nat.  pred even i:nat.  pred double i:nat, o:nat.

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.

even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].

double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.

double X Y :- var X, new_constraint (double X Y) [X].

constraint even odd double {
  rule (even X) (odd X) <=> fail.
  rule (double _ X) <=> (even X).
}
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λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

even X
X = succ Y
not (double Z Y)

ProgramGoals

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).

Rules

Constraint store

even X, X = succ Y, not (double Z Y)
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λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

X = succ Y
not (double Z Y)

ProgramGoals

Rules
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X

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).
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λProlog 101: type checker for λProlog + CHR 101

even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

even (succ Y)
not (double Z Y)

ProgramGoals

Rules

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).
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even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

odd Y
not (double Z Y)

ProgramGoals

Rules

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).
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(double _ X) <=> (even X).
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even zero.
odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].
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ProgramGoals

Rules

Constraint store

odd f
Y

double f
Z
 f
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even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).



Feb 20, 2020Enrico Tassi

λProlog 101: type checker for λProlog + CHR 101
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odd (succ X) :- even X.
even (succ X) :- odd X.
even X :- var X, new_constraint (even X) [X].
odd X :- var X, new_constraint (odd X) [X].
double zero zero.
double (succ X) (succ (succ Y)) :- double X Y.
double X Y :- var X, new_constraint (double X Y) [X].

ProgramGoals

Rules

odd f
Y

Constraint store

even X, X = succ Y, not (double Z Y)

(even X) (odd X) <=> fail.
(double _ X) <=> (even X).
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Elpi = λProlog 101: type checker for λProlog + CHR

●  λProlog 101: type checker for λProlog for …
 backward reasoning, search
✔ programming with binders recursively

● CHR for …
 forward reasoning
✔ manipulate (frozen) unification variables
✔ handle metadata on unification variables
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What about Deducti
https://github.com/Deducteam/lambdapi/pull/418

● Demo
● Code overview

https://github.com/Deducteam/lambdapi/pull/418
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What about Coq-Elpi
https://github.com/LPCIC/coq-elpi/

● Coq’s syntax
– predicate {{ nat → lp:X }} :- use X, print {{ bool → lp:X }}.

● Coq’s API
– $ grep pred coq-builtin.elpi  | wc -l

– 102

– $ grep pred coq-lib.elpi  | wc -l

– 37

● Coq’s vernacular commands:
– Elpi Command foo

– Elpi Tactic bar

● Hierarchy Builder (example)

https://github.com/LPCIC/coq-elpi/
https://github.com/math-comp/hierarchy-builder


Feb 20, 2020Enrico Tassi

Thanks!

● Questions?
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